Sea Urchins as a Model of Negligible Senescence

Species that exhibit negligible senescence tend to be long-lived, but more interestingly appear to exhibit few to none of the functional declines of degenerative aging until very late in life, quite unlike the situation for most mammals, and particularly for humans. One can argue that the most useful species that exhibit negligible senescence are those with near relative species that age more normally. The closer the relative, the more likely it is that comparing the biochemistry of the two will lead to new knowledge regarding aging. So naked mole rats versus other, less long-lived mole rats, Brandt's bat versus other shorter-lived small bats, or as in today's open access paper, the red sea urchin versus short-lived urchin species.

Whether this work on the comparative biology of aging can cost-effectively produce a basis for useful therapies in human medicine remains an open question. Research into the biochemistry of naked mole rats, probably the closest negligibly senescent species to our own species, has yet to yield a way to build useful treatments for aspects of human aging. The one experiment conducted to date involving the transfer of naked mole-rat genes into mice didn't produce the hoped-for sizable gains. It may turn out to be slow, expensive, and challenging to work towards this sort of modification of our biochemistry, as compared with the more standard approaches to medical research

Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin

A tremendous variety of life history strategies have evolved across the animal kingdom, including some animals that achieve remarkably long lifespans (on the order of centuries) without the physiological decline that typically accompanies aging. This phenomenon, referred to as negligible senescence, is characterized by a lack of increased mortality rate or decreased fecundity as an organism ages, in combination with maintenance of physiological function and disease resistance. Animals with extraordinary longevity and negligible senescence rely on unique mechanisms to promote long-term maintenance of tissue homeostasis and physiological function while avoiding degenerative and neoplastic diseases. Understanding these mechanisms can reveal effective strategies to achieve longevity and healthy aging.

Comparative genomics between long-lived and short-lived species is a powerful approach to understand the evolution of longevity and enables unbiased discovery of genes and pathways that regulate lifespan. This approach has been used to identify molecular signatures related to longevity and has uncovered both shared and distinct strategies to modulate aging and disease resistance. Sea urchins represent a promising group of organisms to advance our understanding of lifespan determination and healthy aging. There are approximately 1,000 extant sea urchin species that exhibit a wide range of lifespans, including species with exceptional longevity and negligible senescence.

Life history data indicates that the red sea urchin, Mesocentrotus franciscanus, is one of the Earth's longest-living animals. It is reported to live more than 100 years and shows negligible senescence as defined by indeterminate growth, life-long reproduction, and no age-associated increase in mortality rate or increased incidence of disease, including no known cases of cancer. Negligible senescence has also been reported for other sea urchin species despite a wide range of lifespans. This includes the variegated sea urchin, Lytechinus variegatus, which is reported to live 3-4 years, the painted sea urchin, Lytechinus pictus, reported to live 5-7 years, and the purple sea urchin, Strongylocentrotus purpuratus, reported to live longer than 50 years.

Studies to date, conducted within the framework of known theories of aging, have demonstrated that both short-lived and long-lived sea urchin species lack many hallmarks of aging. Sea urchins maintain telomere length, antioxidant and proteasome enzyme activities, and regenerative capacity, and exhibit little accumulation of oxidative cellular damage with age. Gene expression studies using tissues of long-lived species indicate that key cellular pathways involved in protein homeostasis, tissue regeneration, and neurological function are maintained with age. Although genomes have been assembled for several sea urchin species, including S. purpuratus, L. variegatus, and L. pictus, to date no high-quality genome has become available for the long-lived red sea urchin M. franciscanus. Here we report a chromosome-level assembly for the red sea urchin genome. Targeted analysis of this genome and comparisons between long- and short-lived species sheds light on the molecular, cellular, and systemic mechanisms that promote longevity and negligible senescence.

A Population Study Correlates Air Pollution with Faster Cognitive Aging

A number of large epidemiological studies provide evidence for long-term exposure to greater levels of air pollution to accelerate the onset and progression of age-related disease. A few of these manage to control for the tendency for wealthier people to avoid living in areas with higher particulate air pollution, and the correlation with worse health remains. Mechanistically, it is thought that particulates provoke greater chronic inflammation via their interaction with lung and other tissues, and this in turn contributes to the cell and tissue dysfunction that leads to age-related disease.

The present study assessed cognitive test performance in English older adults in relation to long-term air pollution exposure at the residential address. The follow-up period of 15 years and the large number of repeated measurements make the present study unique in terms of design and data availability. Increasing exposure to NO2, PM10 and PM2.5 was consistently found to be associated with decreased memory and executive function test performance, whilst ozone showed the opposite effect. The results remained similar in the analysis including residents of London only, for whom exposure to NO2 and PM was higher. As an illustrative example, the decline in memory and executive function scores per interquartile range (IQR) increase in long-term NO2 exposure was found equivalent to ageing by about 1.5 and 4 years respectively.

In order to fully elucidate the potentially adverse cognitive effects of air pollution, further study into the underlying biological pathways and mechanisms through which air pollution may contribute to cognitive decline is required alongside the expanding epidemiological work. Translocation of inhaled particles from the lung to the brain via the bloodstream provides one possible pathway through which particulate matter may affect cognition, as well as inhalation through the nose and transportation to the olfactory bulb via olfactory nerves. Evidence for such pathways is currently limited and further experimental studies are required.

Link: https://doi.org/10.1186/s12940-024-01075-1

Bacterial Peptides Improve Mitochondrial Function in Intestinal Tissues

Many compounds are now known to have some positive influence on mitochondrial function. The biochemistry is complex and incompletely understood. Even in the well-studied cases, there are hypotheses regarding the mechanism of action, but little certainty. In general, improvement of the quality control mechanism of mitophagy appears to be a necessary factor in the improvement of mitochondrial function in old tissues, but that appears to happen as the result of many different types of intervention. Here, researchers note that a class of bacterial peptides originating from the gut microbiome appear to improve mitochondrial function in intestinal tissue. This may be the basis for yet another type of treatment or supplement to modestly improve mitochondrial function. Those developed to date struggle to improve on the effects of exercise, however.

Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease.

In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.

Link: https://doi.org/10.1016/j.celrep.2024.114067

Higher Taurine Intake in the Diet Correlates with Some Measures of Strength in Middle Age

Taurine is a amino acid mainly found in fish and meat in the diet. It is not an essential amino acid, and can be synthesized in humans. Circulating taurine levels in the bloodstream decline with age by about 50% by middle age for reasons that have yet to be determined. Studies in aged mice and non-human primates have shown modestly improved function and slowed aging following taurine supplementation. Past human studies of taurine supplementation have produced entirely unimpressive outcomes, but given that they predated present aging clocks it may be that the researchers were evaluating the wrong metrics. Taurine may act on the pace of aging through a range of different mechanisms, and it remains unclear as to which of these are more or less important.

In the context of recent studies on taurine supplementation, today's open access paper seemed interesting. The authors report on correlations between taurine intake in the normal diet with a few measures of fitness and muscle strength in middle-aged individuals. Human studies of taurine supplementation require a dose in the range of 1.5-6.0 grams per day to remove the 50% loss in circulating taurine. This supplement dose is the human equivalent extrapolated from the effective doses in mice and non-human primates. Here, dietary intake of taurine in the study participants was estimated to be ~200 milligrams per day, which is actually higher than previously reported averages, particularly for vegetarians. Given that, one might argue that taurine levels in the diet are a proxy for the influence of some other better-studied aspect of dietary choices on long-term health, such as overall protein intake.

Association of taurine intake with changes in physical fitness among community-dwelling middle-aged and older Japanese adults: an 8-year longitudinal study

Taurine has diverse valuable biological functions, including antioxidant activity and regulation of osmotic pressure. Maintaining physical fitness from middle age is important for healthy life expectancy. Although taurine administration improves muscle endurance and strength, its role in maintenance remains unclear. We aimed to clarify the longitudinal taurine intake association with fitness changes.

Participants comprised men and women aged ≥40 years who participated in the third (2002-2004; Baseline) and seventh (2010-2012; Follow-up) waves of the National Institute for Longevity Sciences-Longitudinal Study of Aging (NILS-LSA) and completed a 3-day dietary weights recording survey at baseline. A table of taurine content was prepared for 751 foods (including five food groups: Seaweed; Fish and shellfish; Meat; Eggs; and Milk and dairy products) from the Standard Tables of Food Composition in Japan (1,878 foods) 2010. Four physical fitness items (knee extension muscle strength, sit-and-reach, one-leg standing with eyes closed, and maximum walking speed) were measured at baseline and follow-up. We analyzed the association of taurine intake with physical fitness change, employing a general linear model (GLM) and trend tests for baseline taurine intake and follow-up fitness change. Adjustments included baseline variables: sex, age, height, weight, educational level, self-rated health, smoking status, depressive symptoms, and clinical history.

The estimated average daily taurine intake was 207.5 ± 145.6 mg/day at the baseline. When examining the association with the four physical fitness parameters, higher taurine intake positively increased the change in knee extension muscle strength and reduced the decline in knee extension muscle strength in the subgroup analysis of participants aged ≥65 years. No relationship was found between taurine intake and the remaining three fitness factors.

Inducing Low Body Temperature via Torpor Slows Aging in Mice

Past evidence has suggested that the lowered body temperature characteristic of calorie restriction is important to the slowed aging that results in short-lived mammals. One might compare that to the strong evidence for upregulated autophagy to be the driving factor in slowed aging produced by the practice of calorie restriction. Researchers here conduct a similar study, inducing a reduction in metabolic rate, dietary intake, and body temperature in mice via activation of a specific brain region. As in past research, the resulting slowed aging was shown to be driven by that lowered body temperature rather than any of the other effects of this intervention.

Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase health span, remain unknown. We demonstrate that the activity of a spatially defined neuronal population in the anterior and ventral portions of the medial and lateral preoptic area (avMLPA), which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor like state (TLS) in mice.

Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves health span. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the pro-longevity effect of torpor-like states is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the pro-longevity effects of torpor and hibernation and support the growing body of evidence that Tb is an important mediator of aging processes.

Link: https://doi.org/10.1101/2024.03.20.585828

Considering Cellular Senescence in Macrophages

Cells become senescent in response to damage, a toxic environment, the signaling of nearby senescent cells, or, most commonly, because they reach the Hayflick limit on replication. Senescent cells cease replication and begin to secrete pro-inflammatory signals, attracting the attention of the immune system. With advancing age he aged immune system becomes less able to clear senescent cells in a timely manner, leading to a growing, permanent presence of senescent cells in tissues. Some of these senescent cells are themselves immune cells. Given the importance of the immune system to tissue maintenance and regeneration, particularly tissue residence innate immune cells such as macrophages, it should be no surprise to find that senescence in these cells is viewed as contributing to degenerative aging.

Macrophage senescence, manifested by the special form of durable cell cycle arrest and chronic low-grade inflammation like senescence-associated secretory phenotype, has long been considered harmful. As the first-responder to the pathogens and damage in the immune response, macrophages play a vital role in the function of phagocytosis and polarization towards different situations to mediate the inflammation inside individuals. Senescent macrophages are usually featured with an unbalanced polarization state, compromised phagocytosis, impaired migration, and damaged autophagy. Due to the abnormal accumulation and the aberrant functions of senescent macrophages, aged people tend to be unhealthy or with acerbated diseases.

Senescent macrophages play various functions in different diseases or organs which indicates that treatments should be specialized for the distinctive characteristics of senescent macrophages. In the cognitive decline, senescent macrophages turn to behave abnormally in phagocytosis for the dampened scavenging of abnormal unfolded proteins in the central nervous system. The imbalanced polarization state in senescent macrophages also contributes to the development of malignant cancers. More senescent macrophages tend to the M2 phenotype promoting tumor cells proliferating and counteract against cytotoxic T lymphocytes.

Contrarily, in ovarian tissue, senescent macrophages turn to the M1 phenotype with a higher level of iNOS which causes ovarian aging. Secretions of senescent macrophages are also in close relationship with some organ disorders. Grancalcin produced by senescent macrophages would exacerbate skeletal aging for the impaired balance between osteogenesis and adipogenesis of bone marrow stroma cells. Additionally, metabolic disturbances like chaotic cholesterol levels in senescent macrophages cause age-related macular degeneration for their proangiogenic function.

Link: https://doi.org/10.1016/j.apsb.2024.01.008

Proximate Causes of Increased Transposon Expression with Age

In today's open access paper, researchers here look at some of the proximate causes of transposable element activation, the details of the epigenetic and transcriptional issues. It is well known that transposable element activity increases with age. These are sequences capable of self-replication in the genome, the remnants of ancient retroviral infections. Transposon activity is repressed in youth, the sequences hidden from transcription machinery within compact regions of the packaged genome, or hidden inside intron sequences that are normally excluded from transcription.

Aging produces a growing dysregulation of the epigenetic control of genomic structure and gene expression, allowing transposable elements to be exposed to transcription. Further, the process of splicing by which exons and introns are assembled into RNA molecules also becomes dysregulated, allowing occasional inclusion of introns that are normally excluded in youth. The resulting activation of transposable elements becomes a source of further damage and disarray. These sequences haphazardly insert copies of themselves into the genome, breaking existing genes. They can also potentially cause other harms via their gene products, such as via provoking forms of innate immune response to viral agents.

A concerted increase in readthrough and intron retention drives transposon expression during aging and senescence

Aging and senescence are characterized by pervasive transcriptional dysfunction, including increased expression of transposons and introns. Our aim was to elucidate mechanisms behind this increased expression. Most transposons are found within genes and introns, with a large minority being close to genes. This raises the possibility that transcriptional readthrough and intron retention are responsible for age-related changes in transposon expression rather than expression of autonomous transposons.

To test this, we compiled public RNA-seq datasets from aged human fibroblasts, replicative and drug-induced senescence in human cells, and RNA-seq from aging mice and senescent mouse cells. Indeed, our reanalysis revealed a correlation between transposons expression, intron retention, and transcriptional readthrough across samples and within samples. Both intron retention and readthrough increased with aging or cellular senescence and these transcriptional defects were more pronounced in human samples as compared to those of mice.

In support of a causal connection between readthrough and transposon expression, analysis of models showing induced transcriptional readthrough confirmed that they also show elevated transposon expression. Taken together, our data suggest that elevated transposon reads during aging seen in various RNA-seq dataset are concomitant with multiple transcriptional defects. Intron retention and transcriptional readthrough are the most likely explanation for the expression of transposable elements that lack a functional promoter.

Mesenchymal Stem Cell Therapy Produces Thymus Regrowth in Old Non-Human Primates

Thymocytes generated in the bone marrow migrate to the thymus, near the heart, where they mature into T cells of the adaptive immune system. Unfortunately, the thymus atrophies with age. Most people have little active thymus tissue left by the time they are in their 50s. Absent a robust supply of new T cells, the adaptive immune system becomes ever more made up of malfunctioning, senescent, and other problematic cells, lacking the naive T cells needed to respond to new threats. Regeneration of the thymus is thus an important goal. There are some indications that the thymus is more plastic than thought, given that mild calorie restriction in humans produced some gains. Additionally, a growth hormone based therapy has shown some signs of improvement in small human trials. Here, researchers show that stem cell transplantation can produce thymic regrowth in old non-human primates, making this an option that should be evaluated in human patients.

A decrease in the number and activity of thymic epithelial cells (TECs) is an important factor in thymic degeneration. Mesenchymal stem cells (MSCs) treating thymic ageing is a promising strategy. Aged rhesus monkeys were treated with MSCs to establish a thymic senescence model, and hematoxylin-eosin (HE) staining, immunofluorescence staining, and ELISA were performed to observe the structure and function of the thymus. TEC aging model and MSCs co-culture system were established to detect DNA methylation modification and transcriptomic changes, correlation analysis between transcription factor methylation and mRNA expression, and q-PCR, immunofluorescence staining, and Western blot were used to identified key genes.

MSCs improved the structure and function of the thymus in elderly macaque monkeys; reduced the expression levels of β-Gal, P16, and P21; and increased the activity of aging TECs. There were 501 genes with increased methylation in the promoter region in the treated group compared with the untreated group, among which 23 genes were involved in the negative regulation of cell growth, proliferation, and apoptosis, while 591 genes had decreased methylation, among which 37 genes were associated with promoting cell growth and proliferation and inhibiting apoptosis. Furthermore, 66 genes showed a negative correlation between promoter methylation levels and gene transcription; specifically, PDE5A, DUOX2, LAMP1, and SVIL were downregulated with increased methylation, inhibiting growth and development, while POLR3G, PGF, CHTF18, KRT17, FOXJ1, NGF, DYRK3, LRP8, CDT1, PRELID1, F2R, KNTC1, and TRIM3 were upregulated with decreased methylation, promoting cell growth.

Link: https://doi.org/10.1016/j.reth.2024.03.008

Herpes Simplex Infection Correlates with Amyloid Burden in the Aging Brain

There is a continuing debate over the degree to which Alzheimer's is driven by persistent infection in brain tissue, such as by varieties of herpesvirus. Amyloid-β is an antimicrobial peptide, a part of the innate immune response, and one could argue that persistently raised expression of amyloid-β will increase misfolding and generation of the aggregates that drive pathology in the early stages of Alzheimer's disease, at least under the amyloid cascade hypothesis. The data is not all convincing, however, which suggests that perhaps there are other factors involved - that multiple viruses interact in some people, for example, or a pathological interaction between viral infection and some other aspect of brain aging only occurs in some people. It remains to be seen as to where this line of research will lead, but even now it seems a good cost-benefit decision to be using antiviral drugs in later life.

Mounting data suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of Alzheimer's disease (AD), possibly instigating amyloid-beta (Aβ) accumulation decades before the onset of clinical symptoms. However, human in vivo evidence linking HSV-1 infection to AD pathology is lacking in normal aging. To shed light into this question, serum anti-HSV IgG levels were correlated with measures of Aβ deposits and blood markers of neurodegeneration in cognitively normal older adults. Additionally, we investigated whether associations between anti-HSV IgG and AD markers were more evident in APOE4 carriers.

We showed that increased anti-HSV IgG levels are associated with higher Aβ load in fronto-temporal regions of cognitively normal older adults. Remarkably, these cortical regions exhibited abnormal patterns of resting state-functional connectivity (rs-FC) only in those individuals showing the highest levels of anti-HSV IgG. We further found that positive relationships between anti-HSV IgG levels and Aβ load, particularly in the anterior cingulate cortex, are moderated by the APOE4 genotype, the strongest genetic risk factor for AD. Importantly, anti-HSV IgG levels were unrelated to either subclinical cognitive deficits or to blood markers of neurodegeneration.

These results suggest that HSV infection is selectively related to cortical Aβ deposition in normal aging, supporting the inclusion of cognitively normal older adults in prospective trials of antimicrobial therapy aimed at decreasing the AD risk in the aging population.

Link: https://doi.org/10.1186/s13195-024-01437-4

TLR2 Important in the Dysfunction of Hair Follicles

Dysfunction in hair follicles and loss of the capacity for hair growth is a perhaps surprisingly complex aspect of aging and disease. For all the the basic mechanisms of hair growth are well-investigated, the hair follicle is a complex structure, and hair growth involves the collaboration of many cell types, activities, and signaling that shifts over time as the follicle progresses through the stages of growth. It has proven to be hard to pin down any one specific mechanism as vital, and it may turn out to be the case that no one specific mechanism is the key to preventing loss of hair with advancing age and other circumstances.

Nonetheless, researchers continue to search for that one specific mechanism that may reverse age-related loss of hair follicle function and hair growth. In today's open access paper, researchers argue for innate immune involvement to be important, mediated by toll-like receptor 2 (TLR2). Level and activity of TLR2 both decline with age, while delivery of a suitable native ligand that interacts with TLR2 produces improved regeneration of hair follicles and hair regrowth following injury in mice. Whether this approach will also work to reverse hair thinning and hair follicle dysfunction in old, uninjured animals remains to be seen.

TLR2 regulates hair follicle cycle and regeneration via BMP signaling

Hair follicles (HFs) represent one of the best examples of mini-organs with the ability to regenerate throughout life, which, in turn, relies on the proliferation and differentiation of HF stem cells (HFSCs) within hair bulge. The cyclic renewal of HFs is orchestrated by the interplay between inhibitory and stimulatory signals. Despite the immune privileged status of HFs, they have a unique microbiome and immune system, including resident macrophages and other immune cells. Components of the HF immune system have been implicated in regulating the HF cycle and its regeneration. Given their exposure to pathogens, HFs are equipped with innate immune receptors, particularly Toll-like receptors (TLRs), which detect and respond to pathogens by stimulating the secretion of defensins.

TLRs play a key role in recognizing and responding to either pathogen-associated molecular patterns or damage-associated molecular patterns, mediating the cytokine response. However, the role of TLRs extends beyond this function, as they have been shown to directly promote tissue regeneration and homeostasis in multiple tissues, particularly in stem and progenitor cells.

Multiple reports connect altered HFs' immunity to hair loss, including a breakdown of immune privilege in alopecia areata. Likewise, androgen, which is tightly linked to TLR activation, was shown to influence the innate immunity of HFs in androgenic alopecia. The decline of innate immunity processes due to aging or conditions like obesity is widely recognized and these conditions are causatively associated with hair thinning and loss. Alopecia patients often have higher body weight index and weight compared to healthy individuals. Increased body weight index is linked to more significant hair loss severity in adults and a higher prevalence of hair disorders in children and adolescents. Mouse models support these findings, showing that activation of innate immunity through pathogen signals might lead to alopecia and that high-fat diets inducing obesity cause hair thinning through HFSC depletion.

Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including TLRs. Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depend on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a hair cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.

Delivery of TGF-β1 Following Heart Attack Reduces Reperfusion Injury

A heart attack is triggered by rupture of an atherosclerotic plaque and downstream blockage of an important vessel feeding oxygenated blood to heart tissue. Much of the permanent harm resulting from a heart attack occurs when blood flow is restored to ischemic tissue, however. A cascade of maladaptive reactions, inflammation, and cell death occurs, leading to scarring and loss of function in the heart muscle. This damage to the heart can be reduced to some degree by anti-inflammatory signaling applied soon after the heart attack takes place, as researchers here demonstrate.

Despite major improvements using primary percutaneous intervention (PPCI) to treat patients with acute ST-elevation myocardial infarction (STEMI), progression to heart failure after infarction represents a major clinical problem. Despite state-of-the-art medical care, 22% of patients with STEMI treated with PPCI develop heart failure symptoms within 1 year. Detrimental progression is substantively determined by the original infarct size and time to reperfusion. An acute exuberant proinflammatory response can further enhance local cardiac injury. Over time, this can lead to adverse ventricular remodeling and gradual loss of cardiac function that can result in heart failure. For patients with STEMI, particularly those with large infarcts, additional intervention in the acute phase is needed to reduce ischemia-reperfusion injury and protect myocardial tissue, thereby reducing the risk of progression to heart failure.

Transforming growth factor (TGF)-β1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-β1 after myocardial infarction. In patients with STEMI, there was a significant correlation between higher circulating TGF-β1 levels at 24 hours after myocardial infarction and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-β1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-β1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction), reduced inflammatory infiltrate (28% reduction), lower intracardiac expression of inflammatory cytokines IL-1β and CCL2 (more than a 50% reduction) at 24 hours, and reduced scar size at 4 weeks (21% reduction) after reperfusion.

Link: https://doi.org/10.1016/j.ajpath.2023.09.014

Long-Lived RNA that is Never Replaced in Neurons

The question of whether there are long-lived molecules in long-lived neurons in the brain is an interesting one. Are there specific molecules in the brain that never get replaced across a lifetime, and thus might be vulnerable to damage in the form of modifications that disrupt function? This remains a somewhat hypothetical concern, in the sense that there is no direct demonstration that this is a significant source of dysfunction in late life. Researchers have found evidence for long-lived nuclear pore proteins, however, and here another group presents evidence for long-lived RNA molecules.

Most cells in the human body are regularly renewed, thereby retaining their vitality. However, there are exceptions: the heart, the pancreas, and the brain consist of cells that do not renew throughout the whole lifespan, and yet still have to remain in full working order. Now researchers were able to demonstrate for the first time that certain types of ribonucleic acid (RNA) that protect genetic material exist just as long as the neurons themselves.

"This is surprising, as unlike DNA, which as a rule never changes, most RNA molecules are extremely short-lived and are constantly being exchanged. We succeeded in marking the RNAs with fluorescent molecules and tracking their lifespan in mice brain cells. We were even able to identify the marked long-lived RNAs in two year old animals, and not just in their neurons, but also in somatic adult neural stem cells in the brain."

In addition, the researchers discovered that the long-lived RNAs, that they referred to as LL-RNA for short, tend to be located in the cells' nuclei, closely connected to chromatin, a complex of DNA and proteins that forms chromosomes. This indicates that LL-RNA play a key role in regulating chromatin. In order to confirm this hypothesis, the team reduced the concentration of LL-RNA in an in-vitro experiment with adult neural stem cell models, with the result that the integrity of the chromatin was strongly impaired.

Link: https://www.eurekalert.org/news-releases/1040098

An Update on Reversal of Atherosclerosis at Repair Biotechnologies

As some of you know, Repair Biotechnologies is the company I co-founded with Bill Cherman back in 2018. We've been working on an approach to reverse atherosclerosis for much of that time, and matters have progressed through the stage of great data in mice to present preparations for a pre-IND meeting with the FDA. While excess cholesterol has long been understood to be important to the development of atherosclerosis, it turns out that circulating cholesterol bound to LDL particles is less important than the amount of localized excess cholesterol in the liver and blood vessel walls.

Any localized excess of cholesterol can overwhelm the ability of cells to reduce uptake or store cholesterol in either the cell membrane or in esterified droplets. The resulting free cholesterol inside cells is toxic. The gene therapies developed by the Repair Biotechnologies scientists put in place novel protein machinery that can selectively and safely break down this excess free cholesterol without harming the cholesterol necessary to cell function. This can, for example, protect macrophages from becoming foam cells when exposed to excessive cholesterol. It can also put a halt to dysfunction in liver cells affected by the excess cholesterol present in a fatty liver.

Repair Biotechnologies' gene therapy rapidly reverses atherosclerosis in mice

Gene therapy company Repair Biotechnologies has revealed promising preclinical results that demonstrate its technology rapidly reverses the progression of atherosclerosis in mouse models. The company says the development holds potential for treating both atherosclerosis and a rare genetic condition called familial hypercholesterolemia, in humans.

Atherosclerosis is a condition characterized by the buildup of plaque in arteries, eventually blocking blood flow, and contributing significantly to heart disease, stroke, and death. In experiments, scientists at Repair Biotechnologies treated atherosclerotic mouse models with the lipid nanoparticle (LNP)-messenger RNA (mRNA) therapy over a six-week period, with promising results.

Both groups of mice, one representing a general population model for atherosclerosis, and another modeling familial hypercholesterolemia, exhibited significant reductions in plaque buildup. Specifically, the atherosclerotic mice showed a 19% drop in plaque lipids and a 23% increase in plaque collagen, indicating stabilization of vulnerable plaque. The mice with familial hypercholesterolemia experienced a 17% reduction in plaque obstruction in the aortic root, alongside improved cardiovascular health demonstrated by increased treadmill capacity.

Based in Syracuse, New York, Repair Bio is developing LNP-mRNA therapies targeting a range of health conditions. Unlike traditional therapies that focus on reducing LDL-cholesterol levels in the bloodstream, the company's therapy targets intracellular free cholesterol, which is toxic to cells and contributes to the development of numerous conditions. Repair Bio's approach leverages its cholesterol degrading platform technology to safely break down excess free cholesterol within cells.

"Unfortunately statins and PCSK9 inhibitors that reduce LDL-cholesterol in the blood exhibit little ability to reduce the size of established atherosclerotic lesions," said Mourad Topors, CSO at Repair Bio. "Our studies in severely atherosclerotic mice demonstrate that LDL-cholesterol is the wrong target if the goal is the outright regression of plaque and dramatic reduction in risk of cardiovascular events. Instead, clearance of intracellular free cholesterol can potentially achieve these goals."

Enabling Microglia to Better Clear Amyloid by Interfering in the LILRB4-APOE Interaction

Researchers here describe a mechanism that reduces the ability of microglia to ingest and clear misfolded amyloid-β, the protein aggregates associated with Alzheimer's disease. Interestingly, this involves APOE, and thus might be affected by the different APOE variants connected to Alzheimer's disease risk. The researchers demonstrate that interfering in the interaction between APOE and the LILRB4 receptor present on microglia can restore microglia-mediated clearance of amyloid-β.

Toxic clumps of brain proteins are features of many neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Microglia surround plaques to create a barrier that controls the damaging protein's spread. They also can engulf and destroy the plaque proteins, but in Alzheimer's disease they usually do not. The source of their passivity could result from a protein called APOE that is a component of amyloid plaques. The APOE proteins in the plaque bind to a receptor - LILRB4 - on the microglia surrounding the plaques, inactivating them.

For reasons that are still unknown, the researchers found that, in mice and people with Alzheimer's disease, microglia that surround plaques produce and position LILRB4 on their cell surface, which inhibits their ability to control damaging plaque formation upon binding to APOE. Researchers treated mice that had amyloid beta plaques in the brain with a homemade antibody that blocked APOE from binding to LILRB4. The researchers found that activated microglia were able to engulf and clear the amyloid beta plaques.

After amyloid beta plaques form in the brain, another brain protein - tau - becomes tangled inside neurons. In this second stage of the disease, neurons die and cognitive symptoms arise. High levels of LILRB4 and APOE have been observed in AD patients in this later stage. It is possible that blocking the proteins from interacting and activating microglia could alter later stages of the disease. In future studies, the researchers will test the antibody in mice with tau tangles.

Link: https://medicine.wustl.edu/news/immunotherapy-for-alzheimers-disease-shows-promise-in-mouse-study/

SENS Research Foundation and Lifespan.io to Merge

Merging the non-profits SENS Research Foundation and Lifespan.io is one of those ideas that makes a lot of sense in hindsight. SENS Research Foundation is research focused and very much interested in expanding into patient advocacy, as it depends on philanthropic funding. Lifespan.io is a patient advocacy organization that is very much interested into expanding into helping to advance the science of aging and clinical trials for therapies of aging. They complement one another, and may well produce greater gains as one organization than as two.

Lifespan.io, renowned for its unwavering advocacy for longevity and responsible journalism, is joining hands with SENS Research Foundation, a trailblazer in longevity-focused research and a pioneer of the damage-repair approach to combating aging. Together, these organizations bring a formidable quarter-century of combined expertise to the table. Their collaborative efforts have propelled the field forward and been instrumental in garnering recognition for longevity research as a vital and transformative industry.

This merger represents a deliberate alignment of research and advocacy efforts, uniting them toward the immediate goal of expediting advancements in extending healthy human lifespan instead of waiting for the distant future. With an aim of bolstering the industry at large, they will offer a platform for information creation and dissemination to foster global impact. By pooling together resources, expertise, and networks, the newly formed entity is positioned to significantly influence the progress of rejuvenation biotechnologies while enhancing public awareness and involvement.

Upon completion of the regulatory process, the merger is slated to be finalized by the end of 2024. Lisa Fabiny-Kiser as Chief Executive Officer, and Stephanie Dainow as Chief Business Officer are poised to be Co-Founders of this new entity, joined by an equally representative Board of Directors. By leveraging their combined strengths and a redoubled focus on impactful and translatable research, the merged organization will serve a key sense-making and unifying role for the longevity industry, accelerating the development, translation, and equitable distribution of therapies to increase healthy human lifespan.

Link: https://www.sens.org/sens-research-foundation-and-lifespan-io-announce-intent-to-merge-forming-a-novel-longevity-entity/