Differences Between Mice and Humans in the Assessment of Biological Age

Most of the present forms of assessment of biological age are based on immune cell characteristics in a blood sample. In this paper, researchers look at some of the differences in the biology of mice versus humans that may be relevant to the way in which we should think about animal data versus human data and the utility of various aging clocks. How much can one infer potential utility in humans based on data obtained from mice, and how does that vary by approach to biological age assessment?

Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks.

Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronological age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging.

Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, while mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.

Link: https://doi.org/10.1016/j.exphem.2024.104600