The Three Genetics of Longevity
Permalink | View Comments (0) | Post Comment | | Posted by Reason

One can take the perspective a human is more like a city than an individual, where the noteworthy populace is of diverse origins. The cells of the body are just one demographic, and there are also the microbial population of the gut and the mitochondria to consider. All are joined into a symbiotic relationship, but one that is not completely free from acts of mutual antagonism among its membership.

Longevity is a complex trait whose genetics has been extensively studied since many years. Understanding the genetic makeup that predisposes to longevity is an urgent challenge owing to the explosion of the elder population in western as well as in emerging countries.

Usually the studies on the genetics of human longevity are restricted to the analysis of nuclear genome (nDNA). However, another essential genome, that is, the mitochondrial genome (mtDNA), is part of the genetic machinery of each cell. Despite its limited length, the mtDNA encodes for few genes that constitute a quantitatively relevant group because of the high copy number of mtDNA in each cell.

These two genomes do not work in the void and life/survival, as well as ageing and longevity, depends on their complex interaction with environment/lifestyle. To this scenario we have to add another level of genetic complexity represented by the microbiota, that is, the whole set of bacteria that live in different anatomical districts of our body with their whole set of genes (microbiome). Indeed, the most comprehensive view is to consider human being as a "metaorganism" resulting from the close relationship with symbiont microbial ecosystems. A particular attention has been recently devoted to the gut microbiome (GM). The GM probably represents the most adaptable genetic counterpart of the human metaorganisms, being extremely plastic in response to age-related physiological changes in diet and modification in lifestyle.

Thus, the result of the ageing process is defined by the sum of a number of factors both biological and nonbiological (environmental and stochastic). Therefore while the ageing research based on the study of animal models starts assuming the existence of major genes that determine longevity, in humans this assumption represents an oversimplification. The study of human model imposes a more holistic view of the genetics to grasp the complex dynamics of the interaction between the environment, stochasticity, and the three genetics of the host (nDNA, mtDNA, and GM).

Link: http://dx.doi.org/10.1155/2014/560340

Comments
Post a comment; thoughtful, considered opinions are valued. Please note that comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.









Remember personal info?