Resistance to Oxidative Stress in Cells of Long-Lived Species
Permalink | View Comments (0) | Post Comment | | Posted by Reason

Here is a small slice of broader efforts to investigate and understand the range of differences in longevity and cellular biochemistry between species. It seems likely that these research programs will provide additional helpful information beyond that derived from the straightforward study of human biochemistry when it comes to work on treating aging:

Species differ greatly in their rates of aging. Among mammalian species life span ranges from 2 to over 60 years. Here, we test the hypothesis that skin-derived fibroblasts from long-lived species of animals differ from those of short-lived animals in their defenses against protein damage. In parallel studies of rodents, nonhuman primates, birds, and species from the Laurasiatheria superorder (bats, carnivores, shrews, and ungulates), we find associations between species longevity and resistance of proteins to oxidative stress after exposure to H2O2 or paraquat. In addition, baseline levels of protein carbonyl appear to be higher in cells from shorter-lived mammals compared with longer-lived mammals.

Thus, resistance to protein oxidation is associated with species maximal life span in independent clades of mammals, suggesting that this cellular property may be required for evolution of longevity. Evaluation of the properties of primary fibroblast cell lines can provide insights into the factors that regulate the pace of aging across species of mammals.

Link: http://dx.doi.org/10.1093/gerona/glu115

Comments
Post a comment; thoughtful, considered opinions are valued. Please note that comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.









Remember personal info?