The Trans-NIH Geroscience Interest Group

One of the active formal networks for scientists interested in treating aging as a medical condition is the Trans-NIH Geroscience Interest Group (GSIG), with a focus on public funded research and research groups. The thrust of their efforts is to achieve a modest slowing of the aging process by adjusting the operation of metabolism so as to slow down the rate at which the molecular damage of aging accumulates. These are generally people who - in public at least - do not support SENS rejuvenation research and the goal of repairing the cell and tissue damage that causes aging in order to reverse the progression of aging. The sort of future they envisage is one of slightly longer human life spans achieved through the use of calorie restriction mimetic drugs and the like, and so the interventions supported include the metformin trial, investigations of rapamycin, and so forth, nothing that is at all likely to produce sizable benefits for older people.

Insofar as useful outcomes result from the GSIG, I think it likely that some will be indirect, in the sense of obtaining greater support for treating aging rather than the effects of aging, that will in turn translate into more funding for projects like the SENS programs that can make a large difference. Secondly, direct benefits may emerge from the GSIG focus on biomarkers of aging, assuming that the DNA methylation approach isn't already good enough for practical purposes, and that other technologies must be explored. Good biomarkers of biological age are necessary for the rapid and cost-effective development of rejuvenation therapies, as when the only viable way to determine effectiveness is to try a treatment in mice and then wait a few years, progress is necessarily slow and expensive. With a biomarker, however, such a trial might be accomplished in a few weeks or months and at a much lower cost, assessing the degree of rejuvenation achieved with a measurement soon after treatment.

During a 2010 workshop organized by the Alliance for Aging Research, a discussion was held about the idea that aging is at the core of all chronic diseases, and one of us mentioned, without much pre-conceptualization, that since aging biology is at the core of all the diseases that concern them, then every institute within the NIH should have a Division of Aging Biology. The idea remained and over discussions in the ensuing months, this concept was further developed as a possible activity to be proposed across the entire NIH. As we refined the ideas and prepared to engage others, it became obvious that geroscience was a proper name for the initiative. Thus was born the Trans-NIH Geroscience Interest Group, GSIG.

Interestingly, the concepts of geroscience have long been understood both by scientists and the general public, as well as literature and the arts. However, the concept was slow in gaining recognition in medical spheres because of the ingrained notion that age is not a modifiable factor. While this is obviously true for chronological age (as the passage of time) it is also well recognized that good health at older ages can be attained by relatively simple interventions (which as behavioral changes, appear difficult for many people). Acceptance of age as the major risk factor for chronic diseases is implicit in the recommendations we receive if we visit a medical doctor for any malady: in addition to disease-specific interventions (statins, metformin, antidepressants), we are often counseled to "eat well, exercise moderately, and refrain from smoking." These are non-specific recommendations aimed at "healthier aging," but physicians seem loath to say so directly.

What has changed the perceptions is the astonishing advances made in the last couple of decades by scientists focused on understanding the basic biological underpinnings of the aging process, independently of disease. This has led to a few publications, including those from the GSIG, that have attempted to classify the main hallmarks or pillars currently believed to be the main drivers of the aging process. These conceptual advances have worked synergistically with reports from the NIA-supported Interventions Testing Program, which aims to test, in a variety of animal models, mostly pharmacological interventions that lead to an increase in both lifespan and healthspan.

Acceptance of the geroscience concept within the NIH proceeded at such a fast pace that an action plan was much less developed than the conceptual arguments used to form the group. An important strategic point was to keep the initial goals simple and attainable. This required a focus primarily on informational activities that would not require significant dollar investments on the part of participating institutes. Also, because the entire concept had been developed as a means to capitalize on the advances in basic aging research, the initial goal statement indicated that the focus was to be on basic biology, although we recognized the translational value of the effort. Current efforts are focused primarily on three areas where the GSIG recognizes an urgent need for further research: development of more appropriate animal models, enhancing the focus of geroscience on health irrespective of disease, and identification of suitable molecular and cellular biomarkers of the aging process. Taken together, these efforts aim at developing a deeper understanding of the basic biology driving all chronic diseases, and harnessing that knowledge for the betterment of health and well-being.

Link: https://dx.doi.org/10.1007/s11357-016-9954-6

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.