Exosomes in Aging and Age-Related Conditions
Any broad consideration of exosomes is entirely too broad to fit in one paper. Exosomes are one category of extracellular vesicles, membrane-wrapped packages of molecules released by cells as a part of cell to cell communication. At this point the diversity of extracellular vesicles and circumstances leading to their generation and selection of specific contents are not well mapped, but nonetheless one major component of ongoing research is to establish sources of exosomes or other vesicles that can be used as a basis for therapy. It is well understood at this point that the benefits of stem cell transplantation emerge from the signals produced by the transplanted cells in the short time they survive. Harvesting extracellular vesicles from stem cells in culture and then infusing these vesicles instead of the cells produces similar outcomes in preclinical studies, but is logistically easier to manage. Developers are moving towards formal clinical trials, while extracellular vesicle treatments are already widely available via medical tourism and other avenues.
Aging is accompanied by a gradual decline in physiological resilience and an increased risk of chronic diseases collectively known as age-related disorders, including neurodegeneration, cardiovascular disease, and osteoarthritis. Exosomes, nano-sized extracellular vesicles, have emerged as critical mediators in the aging process and related pathologies. By moving bioactive cargo such as proteins, lipids, and mRNAs exosomes facilitate intercellular communication and modulate processes central to aging, including inflammation, immune response, senescence, and tissue repair.
Exosomes contribute to "inflamm-aging," influence stem cell function, and reflect age-associated molecular alterations, positioning them as potential biomarkers for early diagnosis and disease monitoring. Understanding dual role of exosomes as both contributors to aging and platforms for intervention offers new avenues for promoting healthy longevity and mitigating the burden of age-associated diseases. Also, their inherent stability, low immunogenicity, and capacity for targeted delivery make exosomes promising candidates for therapeutic applications in regenerative medicine and anti-aging interventions.
This review synthesizes current knowledge on exosome biogenesis, composition, and functional roles in aging and age-related diseases. We discuss emerging evidence supporting their use as diagnostic and prognostic tools and their potential in cell-free therapies aimed at modulating age-related decline. Despite their promise, several challenges impede clinical applications. Addressing these limitations will be essential to fully harnessing the therapeutic potential of exosomes in aging. Notwithstanding these obstacles, exosomes exhibit significant potential for personalized and combinatorial therapies. Understanding the dual role of exosomes as both contributors to aging and tools for its modulation may open new avenues for interventions to promote healthy longevity.