Perspectives on Aging Research and the Near Future of the Field

Aging research is not a field marked by its unity. At the high level there is some degree of consensus on the need to treat aging as a medical condition, and that this is a plausible goal given time and effort. But ask questions about any particular detail regarding the mechanisms of aging, how to progress towards therapies, the bounds of the possible, and the state of the field, and you will usually find almost as many opinions as there are researchers to hold them. This is characteristic of a field of study in which far more remains to be discovered than has been mapped to date. The research community cannot be said to fully understand the cell, let alone how an organism made up countless cells of many diverse types changes over time.

Still, enough is known to make inroads. We can target senescent cells for selective destruction. We can replace mitochondria. We can reprogram epigenetic patterns. And so forth. We can have opinions on how well any specific class of therapy will perform, but only by earnestly trying a given approach - building the therapies, conducting the clinical trials, and bringing drug into widespread use - will we actually find out how well that approach works.

As recent history demonstrates, the creation of novel therapies is a slow process in the present environment of medical regulation. Ten years is a rapid pace for the move from idea to first clinical trial. Another decade might pass between that first trial and commercial availability of the resulting drug for the average patient. Success for any given line of research is not inevitable. Viable therapies can be completely ignored because the drugs involved are generic, or the approach otherwise cannot be effectively patented and monopolized. A long road lies ahead, given the way in which medical research and development is presently conducted.

Past, present and future perspectives on the science of aging

Juan Carlos Izpisua Belmonte: In the next decade, I expect aging research to move from describing decline to restoring function. High-resolution human datasets, from single-cell and spatial maps to longitudinal studies, will provide a clearer picture of how aging progresses across tissues. At the same time, systemic biology will become even more important, with interorgan communication and circulating signals serving as key therapeutic entry points. Clinically, biological age measures will help to personalize prevention and allow earlier intervention. In the long term, I am hopeful that these developments will reshape medicine.

Steve Horvath: Over the next 10 years, I expect the field to shift decisively from measuring aging to modulating it in humans. I hope that epigenetic clocks will continue to mature into tools for evaluating interventions in individuals and even at population scale. My hope is that the aging field will identify safe, well-tolerated interventions that are capable of rejuvenating multiple human organ systems.

Bérénice A. Benayoun: In the next decade, I think the future of our field will be precision geroscience - understanding what shapes aging trajectories and which levers can be potentially acted upon to promote long-term health, not only based on private unique genetic variation but also other important factors that we are just beginning to appreciate/

Steve N. Austad: I see a takeover by massive omics. I am not suggesting this is a bad thing. It will certainly lead to a personalization of health and medical treatments, but I don't think it will lead to the kind of breakthrough that something like antibiotics represented. I think there will be more interventions on the market over that time (mostly supplements) - some might even be effective, although I doubt they will outdo what the best lifestyle choices do now. Real breakthroughs, if they come, will be further out than 5-10 years.

Terrie E. Moffitt: Over the next 5-10 years, I envision aging research evolving into an era of close integration between basic and clinical sciences, much like what has been achieved in hypertension, diabetes and cancer research. As our understanding of the molecular mechanisms that regulate aging deepens, we will see the identification of diverse therapeutic targets and an acceleration in the development of drugs, vaccines and other interventional strategies.

Guang-Hui Liu: The coming decade will probably see a shift towards precision geroscience. Multidimensional aging clocks may become clinically useful tools for quantifying biological age and intervention effects. We anticipate early human trials targeting newly recognized aging drivers, and advances in gene and cell-based regenerative strategies. Critically, the field is moving towards a unified medical paradigm: targeting the root causes of aging to prevent multiple chronic conditions together, rather than individually.

Vadim N. Gladyshev: I expect to see organ- and systems-resolved aging maps and clinically qualified aging biomarkers; routine real-time biological age monitoring (omics, digital, wearables, and imaging); embryo-inspired rejuvenation cues; advances in replacement; insights from long-lived species on complex interventions that slow down aging; and advances in the theoretical understanding of aging.

Vera Gorbunova: I expect the first antiaging interventions to be approved and introduced to clinical practice. I see aging biomarkers to become a routine part of a health check-up linked to individualized recommendations on improving healthspan. I also expect the development of safe interventions focused on restoring a more youthful epigenome, and preventative strategies to enhance genome stability and improve DNA repair to become available.

David A. Sinclair: I expect the emergence of interventions that treat common diseases by resetting cellular age and allowing the body to heal itself. This will include Yamanaka factor mediated epigenetic reprogramming, due to be tested in humans in 2026, followed by epigenetic editing, small-molecule reprogramming drugs and AI-guided therapies. Within 10 years, I foresee whole-body rejuvenation.

George A. Kuchel: I firmly believe that the future of geroscience, and also its most important impact, will be in the prevention of multiple chronic conditions, which are among the most prevalent and typical features of aging in humans.

John W. Rowe: First, there will be a dramatic increase in the number of clinical trials focused on senescence and age-related disorders with interventions arising from geroscience. Second, we are lagging behind in care of older persons and geriatric medicine continues to suffer severe workforce inadequacies, especially for those with low or middle income. Societies must recognize the need and develop incentives, including financial, to bolster all facets of the eldercare workforce including public health, acute care and long-term care. Third, we have largely viewed aging as an accumulation of deficits and have systematically neglected the valuable capabilities that older people bring to society.

Oskar Hansson: In the space of neurodegenerative diseases, I think we are now moving into the therapeutic era, and I hope that the research community will develop several effective and safe interventions for these devastating brain diseases. Personally, I have especially high hopes for different genetic medicine approaches.

Anne Brunet: The field is moving forward very rapidly, and it is amazing to be part of it! I think there will be several translational breakthroughs in the next 5 to 10 years, notably for devastating age-related diseases such as Alzheimer's disease. Research-wise, it will be very cool to see what happens because so much more is feasible at the organismal level, and it will be an era of quantitative physiology that can be done at scale.

Ming Xu: In the next 5 to 10 years, I expect that the field of aging research will make incredible progress in these three directions. (1) I expect to see a significant rise in large-scale, human clinical trials for geroscience interventions. (2) Single-cell and spatial omics technologies will allow us to reveal the cellular and tissue-specific heterogeneity of aging. 3) AI will become an indispensable tool for aging research. AI and machine-learning models will be used to understand the complexity of multiomics data, identify novel aging targets and design personalized therapies.

Eiji Hara: Cellular senescence research is currently attracting considerable attention, with growing evidence that senescent cells are deeply involved in aging and various age-related diseases. Many studies suggest that targeting senescent cells could help to prevent or treat age-related conditions. Over the next 5-10 years, I expect we will gain a clearer understanding of several critical questions: which types of senescent cells drive specific pathologies, what are the optimal strategies for selective elimination versus functional modulation of these cells, and what are the potential risks of senolytic interventions.

Jing-Dong J. Han: I envision the next decade as the era when aging research becomes a predictive science. Big data will provide the 'language' of aging - a comprehensive, high-resolution dictionary of biological changes. AI models will be the 'translator', enabling us to read this language to forecast health trajectories, identify vulnerabilities and design personalized interventions long before clinical symptoms appear. The goal will be to move from treating age-related diseases to preemptively managing the aging process itself.

Felipe Sierra: As with all other areas of human activity, the field will be dominated by AI and other computer-based approaches to translate the biology of aging into interventions. In addition, I believe the field will succeed within the next 5 years at identifying predictive and clinically useful biomarkers that will take us into a more quantitative stage of research. I fear that, combined, AI and biomarkers will 'suck up the oxygen' from more basic mechanistic research, and this in turn will lead to progressively diminishing returns from AI and biomarkers.

Matt Kaeberlein: I am optimistic that the importance of geroscience will continue to gain recognition, and lead to greater investment from both public and private sectors. I expect substantial engagement from major pharmaceutical companies and anticipate the first FDA approval for a drug that slows aging, probably in companion animals. That milestone would mark a turning point for translational geroscience. Clinically, the landscape will remain frothy for a while. Some longevity clinics already practice evidence-based medicine, whereas others promote unproven or even unsafe interventions. Over time, I expect consolidation around data-driven, ethical standards.

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.