Longevity Meme Newsletter, December 20 2004

December 20 2004

The Longevity Meme Newsletter is a weekly e-mail containing news, opinions and happenings for people interested in healthy life extension: making use of diet, lifestyle choices, technology and proven medical advances to live healthy, longer lives.



- View "Exploring Life Extension" Previews
- M Prize Nets $100,000 Donation
- Why Michael Rae Joined the Three Hundred
- Proposition 71, Stem Cells, Politics
- Discussion
- Latest Healthy Life Extension Headlines


The film project currently underway at the Immortality Institute should result in a good record of the state of the healthy life extension community in 2004 and 2005. Once finished, it will serve well for years to come as an introduction to our goals and the groups working to extend the healthy human life span.


Bruce Klein has packed film equipment and industriously traveled the US for the past few months. You can see some of the results previewed at the Immortality Institute website - including an interview with Joe Waynick, CEO of Alcor:


Congratulations are due to the film crew for putting this project together and following through so well.


The M Prize, a research prize aimed at encouraging the development of true rejuvenation therapies and accelerating related medical research, received its first large cash donation last week.


British entrepreneur David Fisher has donated $100,000 for fundraising purposes, enabling the Methuselah Foundation to hire a full-time professional fundraiser to work on the M Prize fund. I expect great things to result from this generous donation - we'll be hearing much more from the M Prize staff and volunteers as we move into 2005. You can find out about this initiative at the Methuselah Foundation website:



When Michael Rae, a well known member of the Calorie Restriction society, decided to join The Three Hundred to support the M Prize, he penned a moving, powerful essay to explain his thoughts and motivations. Read it now at the Longevity Meme:


The world we live in is less than ideal. We are reminded of this fact each time we come face to face with the degenerative effects of aging, in ourselves or in those we care about. Ultimately, it is up to us to make the world a better place - we must craft the future that we would like to live in. If we do not, who will?



If you like to keep track of the politics of stem cell research, you might want to take a look at two recent Fight Aging! posts. The first notes discussions relating to public state-level funding around the United States, prompted by Proposition 71 and the creation of the California Institute for Regenerative Medicine:


Chris Mooney, a journalist who focuses on science and politics, recently gave his opinions on the stem cell debate in an online forum at the Washington Post:


"In my view, thanks to what has happened in California, the debate in Washington hardly even matters any more. Unless, of course, Senator Sam Brownback's bill to ban all forms of cloning--including "therapeutic cloning" or cloned embryo research--somehow passes the Senate. Then we would have a federalism showdown pitting the feds versus the Golden State, which has green-lighted this work. And at that point there are all sorts of interesting legal possibilities in terms of who would win...but barring that, I think Washington has been largely superseded in this debate."

Beyond this, it is heartening to see that stem cells - adult stem cells, at least - are percolating through the medical system and seeing greater use in therapies. The next few years should see an explosion of effective first generation medical uses of stem cells for a wide range of age-related degenerative conditions. This, while not healthy life extension per se, can only be a good thing. Why should we have to suffer failing muscles, bones, joints and organs when treatments are so close to fruition?

See the recent news that follows in this newsletter for good examples of stem cell therapies currently in the works or entering human trials.


The highlights and headlines from the past two weeks follow below.

Remember - if you like this newsletter, the chances are that your friends will find it useful too. Forward it on, or post a copy to your favorite online communities. Encourage the people you know to pitch in and make a difference to the future of health and longevity!


Founder, Longevity Meme



Tissue Engineering For Knee Cartilage (December 19 2004)
(From Newswise). Human trials are to begin for a regenerative therapy to regrow damaged cartilage in the knee. "When torn or damaged, the meniscus typically does not heal on its own, and the damaged portion is removed and not replaced. While current surgical techniques solve the short-term problem, osteoarthritis inevitably develops several years later." Via the new approach of "tissue engineering and biological stimulation through the implantation of a scaffold derived from pig intestines, we show the tissue where it needs to grow. ... In our animal studies, we have been able to grow back 90 percent of the meniscus on average." This is a good example of a simple, important repair for aging bodies made possible by the advance of medicine.

Maryland Considers Public Stem Cell Research (December 18 2004)
This short piece presents another example of the continuing ripple effects caused by the passage of Proposition 71 in California. "Fearful the state will lose its edge in biotechnology research, two Democratic lawmakers will sponsor legislation next year to foster human embryonic stem cell research in Maryland. The bills ... would create a legal framework for conducting stem cell research. It would also provide state funds to underwrite research in a field that has inflamed passions in medical, scientific and religious communities." As Chris Mooney says, "In my view, thanks to what has happened in California, the debate in Washington hardly even matters any more."

Making Paralyzed Rats Walk Again (December 18 2004)
The State reports on the state of progress towards using embryonic stem cells to heal paralysis. "Hans Keirstead is making paralyzed rats walk again by injecting them with healthy brain cells sussed from a reddish soup of human embryonic stem cells he and his colleagues have created. Keirstead hopes to apply his therapy to humans by 2006. If his ambitious timetable keeps to schedule, Keirstead's work will be the first human embryonic stem cell treatment given to humans. ... And he has an answer for those who say he's moving too fast and that his experiments with rats are dangling false hope before the 15,000 people paralyzed in the United States each year. 'This is extremely promising. Why the hell would we wait?'"

Stem Cells Seeing Wider Use (December 17 2004)
Recent news has indicated that adult stem cells, at least, are increasingly used in regenerative therapies. This press release reports on using stem cells taken from the patient's fat tissue to aid regrowth of large portions of the skull: "The result of the case study does not tell us to what extent the osteogenic effect is directly attributable to the combination of techniques using stem cells compared to the effect of the bone grafting alone. However, the outcome provides encouraging anecdotal evidence on the potential application for these cells to treat difficult bone defects, laying the groundwork for future work in this area. After twelve months, subsequent to the submission of our findings, the patient continues to do well and the skull is stable."

The Genetics Of Human Longevity (December 17 2004)
A good overview article from PubMed looks at the the results of research into longevity genes over the past few years. (You can read the full version for free over at Science Direct). "This article reviews several genetic pathways that may extend lifespan through effects on aging, rather than through effects on diseases such as atherosclerosis or cancer. These include some of the genes involved in the regulation of DNA repair and nuclear structure, which cause the progeroid syndromes when mutated, as well as those that may affect telomere length, since shorter telomeres have been associated with shorter survival. Other potential longevity genes, such as sirtuins, are involved in regulating the response to cellular stress, including caloric restriction."

How Do Adult Stem Cell Therapies Work? (December 16 2004)
(From ScienceDaily). However it is that adult stem cell therapies - such as for heart damage - produce results, it does not seem to be the way scientists were hoping for: "Previous studies suggested that stem cells from bone marrow could be induced to become cardiac muscle, replacing damaged tissue and potentially restoring heart function. This series of more-rigorous experiments, however, found that the transplanted cells are unable to take the crucial final steps. They do not produce a muscle protein called sarcoglycan, which is necessary for normal heart and skeletal muscle function. ... It's clear that the transplanted cells aren't growing, as we once hoped, into heart cells, but they may stimulate the growth of new blood vessels into the damaged regions or they may secrete growth factors that promote recovery."

Why Join The Three Hundred? (December 16 2004)
Michael Rae recently joined The Three Hundred, a group of ordinary philanthropists who pledge to support the Methuselah Mouse Prize. He has written a moving, powerful essay on his thoughts and motivations: "The Three Hundred is a commitment to strongly and directly support what I believe to be the most effective vehicle for funding genuine anti-aging research - research that could drastically delay, or even ultimately eliminate, the slow, but gradually accelerating downward spiral of physical and mental deterioration with the passing of the years." You can read it here at the Longevity Meme - I hope that it will inspire some of you to put your best foot forward for the future of healthy life extension and support the Methuselah Mouse Prize.

Calorie Restriction Slows Alzheimer's (December 15 2004)
A new study offers the following conclusions: "Restricting the diets of mice reduces the build-up of plaques in the brain that are linked to Alzheimer's disease, according to a new study that offers further evidence of the benefits of calorie restriction. Obese people are already considered to be at a higher risk for developing Alzheimer's but the findings offer some insight into a possible explanation for this trend." The normal cautions apply to extrapolating work on mice to humans, but researchers suspect that lowered blood glucose and insulin are good places to look for an explanation of this calorie restriction benefit. Isn't it time that you investigated calorie restriction? The health benefits are legion and its the only proven, available way to even modestly extend healthy life span.

Medical Nanotech Is Coming (December 15 2004)
The near future of medical nanotechnology is examined at Delaware Online: "All of biology is nano-scale. Nano means molecules; molecules are what we've studied in chemistry and molecular biology for generations ... Once we harness that ability to control molecules, the potential for medical applications are almost endless, say researchers." Early medical nanotechnology is likely to focus on diagnostics, nanostructures like the scaffolds now used in tissue engineering efforts, gene therapies and pinpoint drug delivery. Beyond that, however, the future of medical nanotechnology will rapidly become much more revolutionary. You can read more on this topic at Robert Freitas' Nanomedicine website.

A Test For Early Alzheimer's? (December 14 2004)
The Australian reports on claims of an easy, reliable test that can detect early stage Alzheimers: "In patients with Alzheimer's disease, a gunky material called amyloid built up around nerve cells and seemed to interfere with the way they worked. Amyloid is thought to cause inflammation and damage to the tiny blood vessels that supply oxygen to the nerves. Researchers at the University of Melbourne found this blood vessel damage could be detected outside the brain, on the skin." The lack of a good diagnostic test for early stage Alzheimer's (and other neurodegenerative conditions) has been a real problem across the board. A test would make research move faster and better medical treatment possible.

New Approach For Alzheimer's Vaccine (December 14 2004)
(From EurekAlert). "Current treatments for Alzheimer's disease focus on the symptoms since no therapies have been clinically proven to slow or prevent progression of the disease. Amyloid protein deposits are present in the early phase of the disease - a fact that suggests a gene vaccination would be a step forward in slowing the progression of dementia." Potential Alzheimer's vaccines tested to date have been based on amyloid protein - and have some serious drawbacks. A Texas research team is now trying a new gene-based vaccine in mice to generate antibodies that fight the buildup of amyloid plaque without causing the known harmful side effects of existing vaccines.

To Build A New Heart (December 13 2004)
Wired reports on progress towards growing heart tissue for regenerative therapies: "The scientists used a pacemaker to produce electric signals that mimicked a heartbeat. The electrical stimulation was a key ingredient in growing the heart tissue quickly and getting all the cells to beat in unison, according to the researchers. They bathed the heart patch in a medium of nutrients and gases to keep it pumping, and eight days later, the cells developed into tissue similar to that of the native heart." Tissue engineering is moving forward. We're not there yet, but technology to repair age-damaged hearts is certainly high on the list of things scientists would like to develop.

Aging Research In The Genomics Age (December 13 2004)
The latest Longevity Meme article is a collection of excerpts from Gina Smith's "The Genomics Age", including discussions with biogerontologists Aubrey de Grey and Richard Miller. "When we finally are able to add significantly to our lifespans, we will look back and ask the moral question, why did we not do it sooner?" I'm always pleased to see more authors working to present a positive view of healthy life extension to the public: "We now know all the processes that make up aging well enough to target aging. And when you want to manipulate a complicated system, you only have to understand it a limited amount. You don't have to understand all of it. If we manage to triple the life expectancy of a fifty-year-old, we are pretty much there."



Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.