Resveratrol: Pulling the Big Red Lever

A small community of folk gently prod me with each new resveratrol study making its way through the research pipeline. Some of them sell the stuff, some are being helpful news scouts, but the general tenor is often "hey, check this out, best thing since sliced bread." This same behavior applies, with different small communities of folk, to most other better known (or better hyped) products of a similar class in recent years. I believe this all to be more than a touch overenthusiastic.

It has to be said that I'm a curmudgeon and rational, all round late adopter when it comes to applying biochemistry to my body. I'm not fundamentally opposed to the use of found or screened chemicals by any means, but metabolic science is hard. Very hard. Scientists don't yet have a good handle on the complexities involved; frankly, they don't even have a good handle on the complexities of using the mountains of information they are generating. As has usually been the case in human history, in the biotechnologies of metabolism, our ability to take action outstrips our ability to predict and control consequences.

With that in mind, let me say this: our metabolic biochemistry looks like a big wall full of levers. Some of them are painted red, and we think we understand what the instructions beneath these red levers say. Maybe. How much information do you feel you would like before you pull the big red levers in your own personal metabolism? What level of risk due to disease would you presently need to be suffering in order to take the risk represented by a new compound? How do you evaluate these levels of risk?

These are good questions; you'll find yourself in a position to be asking it often in the years ahead, as scientists become a good deal better at finding or generating new compounds for ever more narrow applications. There are no right answers; it's up to each of us to decide how we'd like to manipulate our own bodies. The sellers of resveratrol will rightfully argue that they are helping those who want to set forth on the basis of the information to date. From my point of view, however, resveratrol is a fair way from meeting the standard for something I'd choose to use.

However you think about this, I encourage you to do more reading than you were intending to do; there's a great deal of information out there on resveratrol.

The gold standard for science to back a form of metabolic manipulation is the research supporting the practice of calorie restriction. It is an open question to whether some shared mechanisms mean that calorie restriction mimetics like resveratrol can piggy-back on this wealth of data to a lower risk. But why take that risk? If you're healthy and young, why risk the use of a compound with comparatively little data behind it versus a lifestyle practice with a great deal of data behind it? Equally, why dive in now versus waiting for more information?

The scientific world is littered with biochemicals that performed wonderfully in mice and then fell by the wayside in humans. The medical and supplement world is littered with poor or varied formulations of chemicals that have little to do with the forms used to obtain well-known laboratory results. There are many slips between the lab and your body; many are very hard or even impossible for folk like you or I to detect ourselves, but each passing year will reduce their number in any given case.

As a final note, this is all a sideshow. It has no more application to the long-term future of medicine and enhanced longevity than whether or not you exercise regularly. It doesn't matter how much resveratrol you take. It wouldn't matter if the folks at Sitris Pharmaceuticals developed a miracle calorie restriction mimetic next year that gives 200% of the health and longevity benefits of actual calorie restriction with no downside. These line items would become a part of good health practices - but you will still age, and you will still weaken, suffer and die.

The point which often goes undiscussed by the CR folks, most biogerontologists, longevity gene fans (including people such as Sinclair and Guarente who are really studying the mechanisms by which CR works), centenarian researchers, most "anti-aging" physicians, etc. is that with these approaches the animals (and people) WILL STILL AGE and WILL STILL DIE! This approach does nothing but slow down the rate of aging -- it does not stop it or reverse it.

Metabolic manipulation is hard to perform safely; it's an enormously complex system, and dire consequences can be waiting to leap out decades down the line. Researchers are spending hundreds of millions of dollars on the problem, with the goal of perhaps a decade or two of healthy life extension as the end result, a decade or two from now. Not to be sniffed at - but you will still age, suffer and die.

There is a better way forward, however, a way in which hundreds of millions of dollars could be used to eliminate an entire contributing class of the molecular damage that causes aging - and in that same 10 to 20 year timeframe. Our metabolism produces an aggregate rate of unrepaired cellular damage; calorie restriction and compounds like resveratrol appear to alter the functioning of metabolism to lower this rate of damage. A form of engine optimization, if you like. There are paths of scientific endeavor that aim at the easier task of repairing - or rendering irrelevant - this damage, however, rather than slowing down its accumulation. Why pay hundreds of dollars for super-expensive, super-effective oil when you can take your car to a mechanic and gain ten times the benefit, in other words.

The Strategies for Engineered Negligible Senescence (SENS) is one such view of repair-based longevity medicine, setting out to show that we understand far more of the damage that causes aging than we do about the metabolism that generates this damage. The point of easiest and most effective action is made quite clear: it is to reverse aging, not slow it.

Think of it this way: an expensively developed slowing of one cause of aging is a one-shot deal that does not help those already physically old. But the expensively developed method of repairing one cause of aging can be applied again and again, and it does help those who are already loaded down with age-related damage. What's more important: rushing after the expensive development of drugs that give short term gains, or laying down the foundations for science that will actually repair aging? Where would you apply the dollars?

Technorati tags: , ,