Longevity Meme Newsletter, January 08 2007

January 08 2007

The Longevity Meme Newsletter is a weekly e-mail containing news, opinions and happenings for people interested in healthy life extension: making use of diet, lifestyle choices, technology and proven medical advances to live healthy, longer lives.



- Half a Glance Behind the Scenes
- A Modest Trove of Science for Your Delight
- Website Updates
- Discussion
- Latest Healthy Life Extension Headlines


What's going on behind the longevity research fundraising scenes at the Methuselah Foundation? Here's half a glance:


"I was invited to a modest gathering today; folk had come together to discuss materials and micro-strategy relating to soon-to-commence Methuselah Foundation efforts to raise larger amounts of philanthropic funding for SENS research - research to repair and reverse aging, in other words. Foundation chair Aubrey de Grey presented, and the usual suspects were in attendance to critique content and exchange ideas: a couple of the other Foundation volunteers, some of the more insightful local venture investors and business owners, general artificial intelligence researchers, a couple of scientists in the medical field, and folk from the Immortality Institute, Singularity Institute and Foresight Institute were in the mix. Very eclectic; quite the interesting crowd."


"Every new idea, every plan, arrives associated with a raft of dumb objections, but you won't convince a smart, educated audience of the merits of your idea by taking time to dispel the dumb objections. The world is full of dumb ideas - many more of them than good ideas. Dumb ideas also arrive accompanied by dumb objections (just look at any average day in politics...), and one of the chores of being involved in a funding organization is to listen to people trying to demonstrate that a dumb idea has merit by demolishing dumb objections to that dumb idea. This is a form of rhetorical alchemy - often performed quite innocently by those sold on a plan that just won't work - that raises red flags for folk in funding organizations. They see all too much of it."


I think it's important to be reminded every so often that medical science and engineering can be an engaging, wonderful exploration in a glittering realm of knowledge provided by modern biotechnology - wherein the possible is only limited by how you decide to fit together the facts in your left hand with the facts in your right to form a new and useful speculation.


"This is the age of barnstorming and invention in biotechnology - an age wherein one can speculate about much more complex variations of inserting tab A into slot B without too much fear of proposing an impossibility. Thinking in that vein, I should mention an article I noticed on the topic of bacteria that feed upon mitochondria.

"I didn't stop to link this to our mammalian problem of accumulating mitochondrial damage - one of the roots of age-related degeneration and disease. Damaged mitochondria take over a fraction of your cells over the decades, turning them into mass exporters of damaging free radicals into the body at large. A regular at the Immortality Institute forums did sit up and take notice, however: 'So I'm wondering if these hungry bacteria (mito-phages?) could be reprogrammed to kill defective mitochondria in particular.'"

The process of discovery is just as engaging: everything links to everything else in our bodies, at every level of biochemistry. Joining the dots and thereby increasing your understanding of just what aging is can be very rewarding:


"You need well-functioning lysosomes (the little recycling plants inside your cells that digest failing components and damaging chemicals) to keep your mitochondria (the power plants inside your cells) in good shape. Mitochondria need to be replaced when they are damaged, or else they can start to damage the cell that hosts them - and that damage is a cause of aging. But simply living across the decades generates an ever-increasing load of biochemical junk that lysosomes can't deal with; eventually they become bloated and inefficient - and that means more damaged mitochondria.

"Long-time readers will find this an interesting link between past posts on the mitochondrial free radical theory of aging, methods to tackle lipofuscin buildup, and the lysoSENS project - the latter being a search for bacterial enzymes that can degrade and remove this buildup of "biological garbage" in lysosomes and elsewhere in your cells.


"This is a good reminder that many classes of age-related cellular damage feed off one another; damage accelerates damage in all failing machinery. All the more reason to accelerate the search for ways and means to fix these problems before they kill us!"


As you might have noticed, I have enacted a number of updates - obvious and not so obvious - at the Longevity Meme and Fight Aging! over the past couple of weeks. The intent is to both to focus more clearly on the purpose and use of these websites as they stand today, and to clean up the laundry list of minor improvements, factual updates and bugfixes that have been languishing untouched or unnoticed for quite some time.

As I see matters, the Longevity Meme is a combination of news tracker and introductory reference library for healthy life extension and its activism, while Fight Aging! is equal parts bullhorn at large and conversational market maker for the healthy life extension community. This is how matters have shaken out over the years, in any case. I'm happy to keep it this way and focus my attention to working on education and awareness for longevity research by growing the audience.

As always, if you see anything untoward or outright broken as a result of recent changes, please do let me know.


The highlights and headlines from the past week follow below.

Remember - if you like this newsletter, the chances are that your friends will find it useful too. Forward it on, or post a copy to your favorite online communities. Encourage the people you know to pitch in and make a difference to the future of health and longevity!


Founder, Longevity Meme


To view commentary on the latest news headlines complete with links and references, please visit the daily news section of the Longevity Meme: http://www.longevitymeme.org/news/

Nanobiotechnology at the NYAS (January 07 2007)
Take a look at the Seventh Annual Nanobiotechnology Symposium at the New York Academy of Sciences; this technology base is giving rise to toolsets that will be used to greatly speed research, improve medicine and ultimately lengthen our healthy lifespans. "Microarrays are widely used today in molecular biology to identify and monitor gene expression. ... [researchers] have found a way to produce a surface that results in significantly more reproducible and precise microarray data. Better microarray data [will] lead to better 'genomic snapshots of the genes that are turned on or off' in individuals, potentially allowing doctors to tailor drug treatments to a person's genetic makeup. ... This year he described a tool for predictive pharmacology and toxicology called a 'body on a chip.' Early devices incorporated separate chambers for lung tissue, liver tissue, fat, and other kinds of tissues with a circulation system to emulate blood's transport properties. Although assembling an entire human body on one chip is not the goal, Shuler said, the 'body chips' can be customized - with liver tissue, bone marrow, and two kinds of tumor tissue, for instance - and used to test efficacy and side effects of adjuvant cancer treatments."

Essay Contest: Why Are People So Hateful About CR? (January 07 2007)
Calorie restriction (CR) blogger and Methuselah Foundation volunteer April Smith is running a short essay contest: "The question inspires perplexitude: why are so many people so hateful (mean, snarky, snotty, pick your word) when they find out that someone, somewhere, eats fewer calories in order to slow his or her biological aging process? We all have our thoughts. Many of you have expressed them eloquently in blog comments. So I've decided to sponsor an essay contest. The prize will be: you get your essay published on the blog." From one of the entries: "When you are afraid, it actually takes courage to recognize your fear and give it its proper name. For some reason, it's more socially acceptable to express anger or even hatred than it is to admit your fears. ... Those of us who have started down the CR path are admitting that we fear death and disease, and we want to do everything in our power to avoid those things as long as possible. We are the fighters. Those who attack us are also afraid of death and disease. But instead of confronting those fears, they reach for anger and hatred - emotions that are apparently easier for them to feel than fear."

More On Stem Cells From Amniotic Fluid (January 06 2007)
I've previously mentioned work to extract multipotent stem cells from amniotic fluid: "Scientists have discovered that amniotic fluid is a readily available source of stem cells and have used them to create muscle, bone, fat, blood vessel, nerve and liver cells in the laboratory. ... the newly discovered stem cells, which they have named amniotic fluid-derived stem (AFS) cells, may represent an intermediate stage between embryonic stem cells and adult stem cells. ... The full range of cells that AFS cells can give rise to remains to be determined. So far, we've been successful with every cell type we've attempted to produce from these stem cells. The AFS cells can also produce mature cells that meet tests of function, which suggests their therapeutic value ... functional tests included implanting neural cells created from AFS cells into mice with a degenerative brain disease. The cells grew and 're-populated' the diseased areas. In addition, bone cells produced from the stem cells were successfully used to grow bony tissue in mice, and liver cells were able to secrete urea, which the liver produces from ammonia."

Towards Control of Cells, Step by Step (January 06 2007)
The Daily Yomiuri reports on one more step forward of many: "A team of doctors has succeeded in creating a hepatic cell out of subcutaneous fat, a development that might lead to a regenerative medicine technique that would enable patients with hepatitis or cirrhosis to have their livers repaired. ... the doctors used a cell called mesenchymal stem cell that accounts for about 10 percent of the subcutaneous fat tissue of a human body ... The researchers added three types of proteins that prompt growth to the stem cells, and incubated them for about 40 days. As a result, nearly all cells turned into hepatic cells ... At least 14 types of proteins, including albumin - one of the major components of blood - and drug-metabolizing enzyme, that are known to be synthesized only in the human liver, were detected in the incubated cells ... the researchers injected about 1 million incubated cells into lab mice that were artificially made to develop liver malfunctions. The ammonia level in the mice, which had been rising before injection, dropped to a normal level in one day." Twenty years from now, we'll take it for granted that doctors can treat us with our own cells, transformed to order to suit the particular need.

The Source of Cancer? (January 05 2007)
The New Scientist clearly misses the ball by emphasising difficulty in cell therapy in relation to this research: "When the teams compared patterns of gene activity in stem cells from healthy and cancerous tissue they found that those from cancers were often locked in a state in which they carry on multiplying as primitive stem cells, instead of maturing into specific tissues. ... When they're in this state they divide more, and in the process may accumulate additional mutations which ultimately turn them cancerous." From the original paper: "Embryonic stem cells rely on Polycomb group proteins to reversibly repress genes required for differentiation. We report that stem cell Polycomb group targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation than non-targets, supporting a stem cell origin of cancer in which reversible gene repression is replaced by permanent silencing, locking the cell into a perpetual state of self-renewal and thereby predisposing to subsequent malignant transformation." If cancer stems - or even only mostly stems - from a single class of changes in stem cells, there won't be much cancer in the world 20 years from now.

Making It Look Easy (January 05 2007)
(From ScienceDaily). The best advances in science are those that make progress look easy and obvious - always anything but in practice. Simple steps forward in the knowledge and capabilities of biotechnology can often be combined to form tools far more effective than previously existed, as demonstrated here: "bone marrow stem cells stick to adhesive proteins called selectins more strongly than other cells ... selectins grab onto a specific carbohydrate on the surfaces of white blood cells, stem cells, and cancer cells. ... King's group coated a slender plastic tube with selectin. They then did a series of lab experiments, both in vitro and in vivo using rats, with this selectin-coated tube to filter the bloodstream for stem cells. It worked ... Another exciting application of King's invention is filtering the blood for cancer cells ... As a cancer cell flows along the implanted surface, King's device captures it and delivers an apoptosis signal, a biochemical way of telling the cancer cell to kill itself. Within two days, that cancer cell is dead. Normal cells are left totally unharmed because the device selectively targets cancer cells."

Small Damage in the Brain Adds Up (January 04 2007)
Via UCSD News, a look at the way minor age-related damage to blood vessels in the brain adds up over time: "researchers used a laser technique they developed to precisely monitor changes in blood flow resulting from an induced blockage in a tiny artery, or arteriole, in the brains of anesthetized rats. They found that the penetrating arterioles, which connect the blood vessels on the brain's surface with deeper blood vessels, are a vulnerable link in the network. ... This damage is an enormous problem. We think it is part of the dementia picture in Alzheimer's and non-Alzheimer's patients. But until now, we had no insight into the mechanism of the damage, and understanding the mechanism is the first step toward understanding how to prevent it." So the effects of AGE buildup, free radical damage to cholesterol, and other types of age-related molecular damage on blood vessels are more significant in an ongoing fashion than we'd like to think. I hope that as more people learn about the unpleasant facts of aging, more will be motivated to help do something about it.

Immortality Institute FAQ (January 04 2007)
You can find the FAQ for the Immortality Institute in the Institute wiki: "How much will it cost to control human aging? Like setting a time frame for curing aging, this is another point at which the best we can do is estimate. Some people set the figure as low as $100 to $300 million, which is less than it takes to develop and bring a new drug to market. Others think it will take $100 billion or more, so as you can see there are a wide spectrum of estimates. Some of the most respected experts in the field put the figure at around $1 billion, but there is likely no way to know for sure. ... Most people who enjoy life can't get enough of it. Even most of those who claim they don't want to live longer than is 'natural' will go to the ends of the earth to cure themselves of cancer, heart disease and injuries when they get stricken. Modern drugs, surgical techniques and diagnostic tools are life extension technologies that few refuse."

A Noteworthy Purchase of Votes (January 03 2007)
(From NY1). It should be no new news that public funds are used to buy votes, but it is noteworthy, to me at least, that the battle over directing taxes poured into the trough to embryonic stem cell research has settled this far: "He's calling for a $2 billion state fund for stem cell and other medical research. ... Spitzer's taking the issue directly to the voters, following in the footsteps of California Governor Arnold Schwarzenegger, who sought and got a $3 billion program through a voter referendum. ... If we want to lead healthy lives, live longer, and make sure we can help people, we have to advance science. And stem cell research is one of those branches of medicine that really holds great promise." In other words, ambitious political operators believe that huge public works for stem cell research will buy votes now, regardless of results or follow-through down the line. This would seem to suggest high levels of enthusiasm in the public at large for major advances in the fight against age-related disease (if not for a sane socioeconomic system to live in or the freedom and drive that effective research requires).

Stem Cell Banking Spreading (January 03 2007)
Interesting news via Bioresearch Online: "NeoStem, a company specializing in adult stem cell collection and banking services for long-term storage for therapeutic uses, has opened the first walk-in, adult stem cell collection and storage center in the US. ... NeoStem provides its patients with adult stem cell collection and banking services via a two step process. The first step is the mobilization, wherein a patient receives injections of a medicine that temporarily allows stem cells to move from a person's bone marrow into the peripheral blood. The second phase is called apheresis, a painless and safe procedure (similar to donating blood) which separates and collects the stem cells from the blood." The open question here is whether this is worth it: what sort of insurance is really provided here? If you believe that the biotechnology revolution will continue unabated, it would seem likely that the medical technicians of 2037 will not need younger frozen cells as an aid to repairing your body. But who can say for sure? At some point the price will be low enough for everyone to hedge their bets at a comfortable cost.

Remember the Dead (January 02 2007)
Remember the dead, felled by aging - and those still dying. For in their suffering, they have still made the effort to help you live a longer, healthier life than theirs: "I do about 100 public talks a year and I ask them, as I would ask you - 'Consider being in our brain bank. Consider giving us your brain after you die for our research in Alzheimer's and Parkinson's and these other age-related disorders,' and people have done that in droves. ... In 2005, SHRI expanded its brain bank to include body donations as Dr. Rogers and the other researchers at the institute began realizing the advantages the institute has for studying Alzheimer's and Parkinson's disease would apply to every other age-related disorder. Another deciding factor was people donating their brains began asking the institute to also take their entire bodies. Of the 1,000-plus people in SHRI's brain bank, nearly 70-80 percent now have signed up to donate the rest of their bodies upon death." What have you done recently to help bring on the future of therapies for age-related conditions?

Lasers and Nanoshells to Attack Cancer (January 02 2007)
If dendrimers are the sharp end of nanoscale engineering in cancer research, you'll find there's plenty still going on further back up the nanotechnology wedge. From the MIT Technology Review: "One of these new approaches places gold-coated nanoparticles, called nanoshells, inside tumors and then heats them with infrared light until the cancer cells die. ... These spheres are small enough (about 100 nanometers in diameter) to slip through gaps in blood vessels that feed tumors. So as they circulate in the bloodstream, they gradually accumulate at tumor sites. ... We shine light through the skin, and in just a few minutes, the tumor is heated up. In the studies that were initially reported - and this has been repeated now more than 20 times in at least three different animal models - we have seen essentially 100 percent tumor remission." Cancer is one of the big bugbears of aging - the sooner scientists become very good at killing it, the better.

Searching For Common Mechanisms in Cancer (January 01 2007)
(From ScienceDaily). Cancers are biochemically very varied; this means the defeat of one specific type of cancer is often of little direct use against others. But discovering common mechanisms across many types of cancer greatly simplifies the problem. Here, a new study "identifies a specific enzyme that can cause the death of cancer cells. Researchers studied the behavior of an enzyme called sphingosine phosphate lyase (SPL), which can regulate cell growth and death by lowering the levels of a natural, growth-promoting lipid called sphingosine-1-phosphate, or S1P. ... The enzyme SPL senses when a cell has sustained damage or is undergoing mutations. Once the enzyme is aware of these changes it responds by killing the cell. We hope to find new ways to leverage the body's own natural responses to these mutated or damaged cells to target cancer cells. ... Although we're beginning our studies in colon cancer, we believe our research findings will have a direct impact on investigations for other cancers."

Stem Cells Versus Diabetic Ulcers (January 01 2007)
As the necessary techniques and technologies for the use of stem cells spread and reduce in cost, specialists in all sorts of fields experiment more readily with regenerative medicine. An example can be found at Medical News Today: "Every 30 minutes a diabetic patient loses the use of his bottom limb due to the ulceration of tissues that degenerates into a necrosis, which is a typical side effect of this disease. ... We employed a murine model that can develop ulcers similar to those observed in humans. Then we administered a specific subpopulation of [vascular progenitor cells] VPCs and, a week after the treatment, we checked what was the overall effect on the ulcers. We observed that the treated lesions had become thinner and smaller compared to the untreated ones, and that they were surrounded by a number of newborn capillaries, indicating that a regeneration process was ongoing ... scientists noticed that VPCs stimulated cellular proliferation and inhibited cellular apoptosis, a defensive mechanism which is active also in necrotic tissues that the organism resorts to when it is unable to heal damages."



Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.