The Dreaded Reactive Oxygen Species

It's good to see more research groups looking into targeting antioxidants to the mitochondria. From EurekAlert!: "Researchers have taken a first snapshot of how a class of highly reactive molecules inflicts cellular damage as part of aging, heart disease, stroke, cancer, diabetes, kidney disease and Alzheimer's disease to name a few. ... researchers have discovered a tool that can monitor related damage and determine the degree to which antioxidant drugs effectively combat disease. ... Our study provides a better glimpse of why a cell under assault by disease makes 10 times as many reactive oxygen species [ROS] as the same cell when healthy. We have discovered a chemical tool for investigating how diseases cause damage, mitochondrion by mitochondrion ... Efforts to develop antioxidant drugs (e.g. vitamin E) to treat diseases of increased oxidative stress have met with limited success to date because they tried to eliminate ROS, rather than maintain the right amount, Sheu said. He established the Mitochondrial Research & Innovation Group (MRIG) [in] 2002 with the goal of designing therapies to deliver precise amounts of antioxidants to the mitochondria of diseased cells only. MRIG teams are, for example, screening through compounds to confirm that oxidative stress can be reversed by mitochondria-specific drugs."

Link: http://www.eurekalert.org/pub_releases/2008-07/uorm-ruk072108.php

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.