Micromasonry in Tissue Engineering

A new technique for tissue engineering: "Tissue engineering has long held promise for building new organs to replace damaged livers, blood vessels and other body parts. However, one major obstacle is getting cells grown in a lab dish to form 3-D shapes instead of flat layers. ... To obtain single cells for tissue engineering, researchers have to first break tissue apart, using enzymes that digest the extracellular material that normally holds cells together. However, once the cells are free, it's difficult to assemble them into structures that mimic natural tissue microarchitecture. Some scientists have successfully built simple tissues such as skin, cartilage or bladder on biodegradable foam scaffolds. ... That works, but it often lacks a controlled microarchitecture. You don't get tissues with the same complexity as normal tissues. ... Researchers [have] come up with a new way to overcome that challenge, by encapsulating living cells in cubes and arranging them into 3-D structures, just as a child would construct buildings out of blocks. The new technique, dubbed 'micromasonry,' employs a gel-like material that acts like concrete, binding the cell 'bricks' together as it hardens. ... You can reproduce this in any lab. It's very simple. ... The short-term next step is really looking at different cell types and the viability of tissue growth."

Link: http://web.mit.edu/newsoffice/2010/tissue-legos-0513.html

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.