Commenting on the Utility of AGE-Breakers

Advanced glycation endproducts (AGEs) are a class of undesirable metabolic byproduct. The level of AGEs in the body rises with age and causes harm through a variety of mechanisms, such as by excessively triggering certain cellular receptors or gluing together pieces of protein machinery by forming crosslinks, thus preventing them from carrying out their proper function.

In past years a number of efforts were undertaken to develop drugs that can safely break down at least some forms of AGE. Early promising candidates in laboratory animals failed in humans because the most harmful forms of AGE are different for short-lived versus long-lived mammals - so what benefits a rat isn't of much utility for we humans. So far little progress has been made towards a therapy for the dominant type of AGE in humans, glucosepane, sad to say, as there is comparatively little interest in this field of research.

Here is a recent paper commenting on the potential utility of AGE-beaker drugs:

Reducing sugars can react nonenzymatically with the amino groups of proteins to form Amadori products. These early glycation products undergo further complex reactions, such as rearrangement, dehydration, and condensation, to become irreversibly cross-linked, heterogeneous fluorescent derivatives, termed advanced glycation end products (AGEs).

The formation and accumulation of AGEs have been known to progress in a normal aging process and at an accelerated rate under diabetes. Nonenzymatic glycation and cross-linking of proteins not only leads to an increase in vascular and myocardial stiffness, but also deteriorates structural integrity and physiological function of multiple organ systems.

Furthermore, there is accumulating evidence that interaction of AGEs with a cell-surface receptor, receptor for AGEs (RAGE), elicits oxidative stress generation and subsequently evokes inflammatory, thrombogenic, and fibrotic reactions, thereby being involved in atherosclerosis, diabetic microvascular complications, erectile dysfunction, and pancreatic β-cell apoptosis.

Recently, AGE cross-link breakers have been discovered. Therefore, removal of the preexisting AGEs by the breakers has emerged as a novel therapeutic approach to various types of diseases that develop with aging. This article summarizes the potential clinical utility of AGE cross-link breakers in the prevention and management of age- and diabetes-associated disorders.

Link: http://dx.doi.org/10.1089/rej.2012.1335

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.