Regenerative Medicine Timelines from Anthony Atala

Anthony Atala is one of the present luminaries of tissue engineering, or at least that part of the field focused on building replacement organs and pseudo-organs - the latter being tissue structures that are not exactly the same as what they replace, but still get the job done, such as the substitute bladder tissue manufactured by Tengion. Atala is also on the SENS Foundation research advisory board, and so can be seen to look favorably on the agenda of engineering longer healthy human life spans.

I notice that a recent article has Atala giving some thoughts on timelines for organ regrowth, which you might compare to similar thoughts from another figure in the field, and to speculative timelines for the use of animal organs, such as those grown in engineered chimeras. Researchers are usually fairly reticent to put times and timelines on the table in public, for all the obvious reasons, so I think it worth taking note when they do:

How Close Are We to Making Like Salamanders and Regenerating Our Own Organs?

Right now, more than 116,000 people are on the U.S. organ transplant waiting list. But what if they could just regrow their own livers, hearts, and kidneys, even 3-D print them? Anthony Atala, the director of the Wake Forest Institute for Regenerative Medicine, is working to make that a reality. Speaking today at Ciudad de las Ideas, an annual conference about big ideas held in Puebla, Mexico, and sponsored by Grupo Salinas, Atala asked, "If a salamander can do it, why can't we?"

So how long until regenerative medicine can make the agonizingly long transplant waiting list a thing of the past? Within the next decade, Atala predicts, "we will see partial replacements of [some] organs - not the entire replacement, but many times that's all we need." Of course, the very necessary regulatory process will have to be carried out before there is widespread use of regenerated organs. Atala notes that the average drug takes 15.5 years to be approved in the United States, and regenerative medicine is neither drug nor medical device, but a combination thereof, which makes approval even more complicated.

"Very necessary" is complete nonsense when describing the enormously restrictive and costly regulatory straightjacket fastened around modern medicine. The FDA is an ever-increasing dead weight that does little but slow down - or block entirely - important progress in medical science. Its existence makes every new medical technology vastly more expensive to develop, and in many cases regulators have closed the door entirely on lines of development because there is no way that benefits could be profitably realized.

Worse, regulators can declare entire potential fields of medicine forbidden, as is the case for applications of longevity science. Aging is not a defined disease for the FDA, and all that is not explicitly permitted is forbidden in their regulatory rubric - so there is no path to legally commercialize a therapy for aging in the US, even when it becomes technically possible to do so. Thus there is little to no funding for such development.

The medicines that might have been and the progress that might have happened is all invisible, of course, so few people pay any attention to it - the broken window fallacy again, where the harm done and costs incurred are swept under the carpet, so people can suggest that we are all better off for it. How much further might medical science have advanced if the ruinous cost of clinical trial after trial after trial, under far more onerous requirements than existed even a few decades ago, were instead funneled into more research?

To explain the seeming gap between accelerating progress in the laboratory and lagging slowness in clinical medicine, one only has to point to the regulators. They are to blame, and the rest of us for not doing something about this squalid situation.