Blocking miR-15 Boosts Regenerative Capacity in the Heart

One important outgrowth of stem cell research is the search for ways to manipulate existing cell populations into greater feats of regeneration. Eventually, it would be hoped, the research community can gain sufficient control over cells in the body so as not to need stem cell transplants at all. Meanwhile scientists are uncovering advances such as this one:

Researchers have pinpointed a molecular mechanism needed to unleash the heart's ability to regenerate, a critical step toward developing eventual therapies for damage suffered following a heart attack.

Researchers found that hearts of young rodents mounted a robust regenerative response following myocardial infarction, but this restorative activity only occurs during the first week of life. They then discovered that a microRNA called miR-15 disables the regenerative capacity after one week, but when miR-15 is blocked, the regenerative process can be sustained much longer.

Further research will be needed to optimize the ways in which medical scientists, and eventually clinicians, may be able to control this regenerative process. "This may well be the beginning of a new era in heart regeneration biology. Our research provides hope that reawakening the regenerative capacity of adult mammalian hearts is within reach."



Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.