So How Do You Measure Life Span in Fly Studies?

The nuts and bolts of reliably measuring life span in small, numerous laboratory animals like flies and worms are glossed over in most of the materials presented here. It's more complicated and prone to error than anyone would like it to be, and as for all such undertakings a whole field of knowledge and practice has been established over the years. Here's an interesting video presentation from the Journal of Visualized Experiments:

Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals.

The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts. In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials.

Link: http://dx.doi.org/10.3791/50068