T-Regulatory Cells More Numerous in the Aged Immune System

The immune system malfunctions with age, producing harmful chronic inflammation while failing to adequately respond to pathogens and failing to destroy potentially cancerous and senescent cells. Characteristic changes in immune cell populations accompany these changes, and in past years researchers have shown that adjusting these populations by destroying some of the unwanted immune cells can reverse at least some immune system declines.

Here is an open access paper that focuses on changes in the population of regulatory T cells with aging. These are cells involved in suppressing the immune response, for example so as to prevent the immune system from attacking healthy tissues:

Over the course of the human life, age-related diseases develop because of the failure of genetic traits to remain beneficial, as they were in younger years when they aided in successful reproduction. Longevity is correlated with optimal natural immunity. Immunosenescence (aging of the immune system) is continuously influenced by chronic antigenic stimulation, such as infections. This explains why the probability of a long lifespan is improved in an environment of reduced pathogen burden. In the presence of low pathogen burden one can expect a balanced state of immune responses and alter the chances of having advanced inflammatory responses

Older persons have higher autoimmunity but a lower prevalence of autoimmune diseases. A possible explanation for this is the expansion of many protective regulatory mechanisms highly characteristic in the elderly. Of note is the higher production of peripheral T-regulatory cells.

The frequent development of autoimmunity in the elderly was suggested to take place in part due to the selection of T cells with increased affinity to self-antigens or to latent viruses. These cells were shown to have a greater ability to be pro-inflammatory, thereby amplifying autoimmunity. During aging, thymic T-regulatory cell output decreases in association with the loss of thymic capacity to generate new T cells. However, to balance the above mentioned autoimmunity and prevent the development of autoimmune diseases, there is an age-related increase in [peripheral T-regulatory cells]. It remains unclear whether this is an age-related immune dysfunction or a defense response. Whatever the reason, the expansion of T-regulatory cells requires payment in terms of an increased incidence of cancer and higher susceptibility to infections.

Link: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616810/