A Demonstration of Reduced Age-Related Hearing Loss in Mice

Researchers have been investigating ways to restore sensory hair cells in the ear for some years now. These cells are lost with age, leading to a form of age-related hearing loss. Here researchers reduce this loss through raising levels of the protein islet1:

Isl1 is a LIM-homeodomain transcription factor that is critical in the development and differentiation of multiple tissues. In the mouse inner ear, Isl1 is expressed in the prosensory region of otocyst, in young hair cells and supporting cells, and is no longer expressed in postnatal auditory hair cells. To evaluate how continuous Isl1 expression in postnatal hair cells affects hair cell development and cochlear function, we created a transgenic mouse model in which the Pou4f3 promoter drives Isl1 overexpression specifically in hair cells.

Isl1 overexpressing hair cells develop normally, as seen by morphology and cochlear functions (auditory brainstem response and otoacoustic emissions). As the mice aged to 17 months, wild-type (WT) controls showed the progressive threshold elevation and outer hair cell loss characteristic [of] age-related hearing loss (ARHL). In contrast, the Isl1 transgenic mice showed significantly less threshold elevation with survival of hair cells. Further, the Isl1 overexpression protected the ear from noise-induced hearing loss (NIHL): both ABR threshold shifts and hair cell death were significantly reduced when compared with WT littermates.

Our model suggests a common mechanism underlying ARHL and NIHL, and provides evidence that hair cell-specific Isl1 expression can promote hair cell survival and therefore minimize the hearing impairment that normally occurs with aging and/or acoustic overexposure.

Link: http://www.ncbi.nlm.nih.gov/pubmed/24048839

Comments

Post a comment; thoughtful, considered opinions are valued. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.