Acarbose Extends Life in Mice

Researchers have demonstrated that acarbose, a drug used to treat type 2 diabetes, extends life in mice. This should probably be taken as speculative until more studies are run, as another treatment for type 2 diabetes, metformin, has erratic results on life span in rodent studies. Like metformin, the mechanism of action for arcabose involves influencing glucose metabolism, though in a completely different way.

Studies of this nature take place because the high costs of regulation in medical development, along with the reluctance of regulators to approve anything new these days, make it more cost-effective to find marginal new uses for existing drugs than to go out and develop new therapies or new classes of therapies. It is unfortunate that so much research time is diverted into channels that cannot result in radical breakthroughs or great advances.

A drug commonly used to treat type 2 diabetes increases the median lifespan of male mice by 22 percent. The effects of the drug known as acarbose were smaller in female mice, producing only a 5 percent increase in lifespan. The study also found that the effect on maximum lifespan was similar in male and female mice, increasing longevity by 11 percent and 9 percent, respectively. "The new results on acarbose support the idea that drugs may someday be developed to prevent many diseases while also slowing the aging process itself."

Acarbose [is] believed to work by slowing the digestion of starches, which prevent rapid increases in blood sugar levels after meals. Most of the mice in the study die of some form of cancer. Authors say the longer lifespan of the acarbose-treated mice suggests that the drug may, through unknown pathways, help to prevent cancer as aging proceeds. [Because] acarbose is known to be safe for long-term human use, it may be possible for clinical researchers to evaluate its effects on aging and age-related diseases, both in people who take the drug to treat their diabetes, and in healthy volunteers. "Further studies in mice may shed light how the cellular and physiological connections between acarbose and control of glucose levels may influence the pace of aging."

Link: http://www.uofmhealth.org/news/archive/201311/diabetes-drug-helped-male-mice-live-longer-smaller-effect