Correlations With Species Longevity Found in the Lipidome

The membrane pacemaker hypothesis suggests that one of the most important links between biology and longevity is the composition of cell and organelle membranes. If membranes are more resistant to oxidative damage then the result will be greater longevity. Differing levels of resistance can emerge in different species because of differing proportions of various lipids that make up membrane structures: some lipids are less vulnerable to peroxidation than others. Here, researchers demonstrate a good correlation between lipid profiles and longevity:

Membrane lipid composition is an important correlate of the rate of aging of animals and, therefore, the determination of their longevity. In the present work, the use of high-throughput technologies allowed us to determine the plasma lipidomic profile of 11 mammalian species ranging in maximum longevity from 3.5 to 120 years. The non-targeted approach revealed a species-specific lipidomic profile that accurately predicts the animal longevity.

The regression analysis between lipid species and longevity demonstrated that the longer the longevity of a species, the lower is its plasma long-chain free fatty acid (LC-FFA) concentrations, peroxidizability index, and lipid peroxidation-derived products content. The inverse association between longevity and LC-FFA persisted after correction for body mass and phylogenetic interdependence. These results indicate that the lipidomic signature is an optimized feature associated with animal longevity, emerging LC-FFA as a potential biomarker of longevity.

Link: http://www.ncbi.nlm.nih.gov/pubmed/24284984