INDY Extends Longevity in Flies via Intestinal Stem Cells

Mutation of INDY, I'm Not Dead Yet, was one of the first longevity enhancing genetic alterations to be discovered in flies. Here researchers link this healthy life extension to preservation of intestinal stem cell function, work that has been helped along by the discovery in recent years of the great importance of the intestinal stem cell population and intestinal function in fly aging. One of the genes altered in that research to enhance stem cell function has now been linked to INDY:

The Drosophila Indy (I'm Not Dead Yet) gene encodes a plasma membrane transporter of Krebs cycle intermediates, with robust expression in tissues associated with metabolism. Reduced INDY alters metabolism and extends longevity in a manner similar to caloric restriction (CR); however, little is known about the tissue specific physiological effects of INDY reduction. Here we focused on the effects of INDY reduction in the Drosophila midgut due to the importance of intestinal tissue homeostasis in healthy aging and longevity.

The expression of Indy mRNA in the midgut changes in response to aging and nutrition. Genetic reduction of Indy expression increases midgut expression of the mitochondrial regulator spargel/dPGC-1, which is accompanied by increased mitochondrial biogenesis and reduced reactive oxygen species (ROS). These physiological changes in the Indy mutant midgut preserve intestinal stem cell (ISC) homeostasis and are associated with healthy aging. Genetic studies confirm that dPGC-1 mediates the regulatory effects of INDY, as illustrated by lack of longevity extension and ISC homeostasis in flies with mutations in both Indy and dPGC1. Our data suggest INDY may be a physiological regulator that modulates intermediary metabolism in response to changes in nutrient availability and organismal needs by modulating dPGC-1.

Link: http://www.impactaging.com/papers/v6/n4/full/100658.html