Advocating Arterial Destiffening to Treat Cardiovascular Disease

It is always good to see more scientists come around to the SENS viewpoint of damage repair as the best treatment for age-related disease. Addressing root causes is a much better approach than the current prevalent paradigm of trying to adapt failing biological systems to work less poorly when damaged, while failing to make a dent in the damage itself. Tackling the root causes should be much more cost-effective and simply much more effective overall, and in many cases the root causes for specific age-related conditions are known rather than merely surmised.

Cardiovascular risk factors (CVRFs) have been shown to induce end organ damage. Until now, the main approach to reduce CVRF-induced end organ damage was by normalization of CVRFs; this approach was found effective to reduce damage and cardiovascular (CV) events. However, a residual risk always remained even when CVRFs were optimally balanced. An additional risk factor which has an immense effect on the progression of end organ damage is aging. Aging is accompanied by gradual stiffening of the arteries which finally leads to CV events. Until recently, the process of arterial aging was considered as unmodifiable, but this has changed.

Arterial stiffening caused by the aging process is similar to the changes seen as a result of CVRF-induced arterial damage. Actually, the presence of CVRFs causes faster arterial stiffening, and the extent of damage is proportional to the severity of the CVRF, the length of its existence, the patient's genetic factors, etc. Conventional treatments of osteoporosis and of hormonal decline at menopause are potential additional approaches to positively affect progression of arterial stiffening.

The new approach to further decrease progression of arteriosclerosis, thus preventing events, is the prevention of age-associated arterial structural changes. This approach should further decrease age-associated arterial stiffening. A totally new promising approach is to study the possibility of affecting collagen, elastin, and other components of connective tissue that participate in the process of arterial stiffening. Reduction of pulse pressure by intervention in arterial stiffening process by novel methods as breaking collagen cross-links or preventing their formation is an example of future directions in treatment. This field is of enormous potential that might be revolutionary in inducing further significant reduction of cardiovascular events.

Link: http://dx.doi.org/10.1007/s11906-014-0479-z