Towards the Indefinite Postponement of Menopause

The future elimination of menopause through medical advances to treat aging has been in the news of late. Menopause is an undesirable thing that happens during aging, and the ultimate objective of rejuvenation research projects is to indefinitely postpone all of the undesirable things that happen during aging. Degenerative aging is a combination of primary damage, spiraling secondary forms of damage, and the evolved reactions of still-functioning systems to that damage. The best way forward to deal with all of this is that of the SENS research programs, among other lines of research: repair the damage. Don't try to compensate for damage, or alter the operation of biology to work better when damaged, as that is an expensive and futile undertaking. It is very hard to try to maintain a system on verge of failure due to damage. Instead work to remove the cause of the problems, giving our biology the chance to repair and restore itself. Our tissues can perform that task very proficiently when not operating in a damaged environment.

The media, and possibly the public, often seem to be far more taken with the possibilities of rejuvenation that don't matter than with those that do. Things like regrowth of lost hair, for example. This seems like a trivial thing. Aging cripples us and kills us: it takes away to ability to walk, to think, to live without constant pain. Yet the trivial, the hair and the wrinkles, captures all of the attention. This is just one of many ways in which it might be argued that we are not a particularly rational species. From where I stand, menopause is not all that much better as a focus for attention: it is far from the worst thing that will happen to any given aging woman.

Nonetheless, a recent interview in which Aubrey de Grey of the SENS Research Foundation mentioned in passing the prospect of the elimination of menopause was widely noted. That comment - out of all the things said - became the focus of dozens of press articles. Why don't people get this worked up about actually fatal age-related conditions like heart disease and dementia? Nonetheless, it should be the case that a woman of the future who has regular access to a comprehensive suite of repair therapies built after the SENS model, reverting the damage to cells and tissues that causes aging, will not suffer menopause. She will have tissues and systems that are the same as those of a young woman no matter her current chronological age. That is the goal, and no more menopause is a side-effect of keeping her healthy.

Over at the SENS Research Foundation you'll find a good science-heavy article on the end of menopause to counterbalance the near-complete absence of scientific details that is the status quo for the popular press. The excerpts below are just small excerpts - you should read the whole thing:

Rejuvenation Biotechnology: Toward the Indefinite Postponement of Menopause

SENS Research Foundation works to catalyze the development of rejuvenation biotechnology: a new class of medicines that will keep us young and healthy and forestall the disease and debility that currently accompany a long life, by targeting the root causes of age-related ill health. Menopause shares much in common with major age-related health problems, inasmuch as they all result from the accumulation of cellular and molecular damage in our tissues over time. Because this damage takes our tissues' microscopic functional units offline, aging damage gradually degrades each tissue's capacity to carry out its normal function with time. When enough of this damage accumulates in a particular tissue, specific diseases and disorders of aging characteristic of that tissue emerges, whether it's in the brain (Alzheimer's and Parkinson's disease), or the heart and circulatory system (atherosclerosis and heart failure), or the machinery controlling cellular growth (cancer) - or the ovaries (menopause). The corollary of this is that by removing and repairing this damage, rejuvenation biotechnology will restore the proper structure of the cellular machinery that keeps our tissues functioning, restoring their ability to keep us alive and with the good health that most of us enjoy at earlier ages.

So maintaining a woman's fertility and postponing or eliminating menopausal symptoms comes down to a mixture of repairing and replacing damaged cells (notably egg cells) and tissues (follicles) whose age-related degradation leads to menopause in the first place, bringing the whole system back to its youthful, functional norm. Today, researchers are pursuing several "damage-repair" approaches to realize this goal, and that's what we'll discuss in this article.

Cell Therapy

You're probably familiar with the promise of stem cells and other cell therapies to treat a variety of diseases and disorders involving cell loss, particularly diseases of aging. Cell therapy is an straightforward way to counteract the loss of viable egg cells with age, particularly in restoring a woman's fertility. To give a woman a new supply of eggs that matches her original genetics will require that those new egg cells begin with her own cells. Scientists are now mastering a couple of ways whereby a person's ordinary, mature cells can have their developmental clocks reset.

Tissue Engineering

This approach is similar to cell therapy, but focuses on the larger-scale goal of replacing an entire organ or tissue instead of replacing specific, critical cell types. In an exciting study, Stanford scientists have reported the ability to generate new follicles from ovarian tissue from women with primary ovarian insufficiency, in which a woman's ovaries stop producing new eggs before the age of 40 and she enters early menopause.

Awakening "Oogonial Stem Cells"

But maybe we don't need to actually give women new ovarian tissue to revive ovarian function. Since the 1950s, it's been the dogma that women are born with a fixed supply of early-stage egg cells that are produced during embryonic development. But this widely-accepted view has been strongly challenged in the last decade, [offering] the potential that "oogonial stem cells" (OSC) may lie dormant in aging women, waiting to be revitalized with the right cocktail of cells or signaling factors.

Cell Encapsulation

The rejuvenation biotechnologies we've explored so far involve replacing egg cells, or whole follicles, or even whole ovaries with new tissue, which would restore both fertility and normal, youthful hormone production. But the disruption of the hormonal system that drives the symptoms of menopause is only indirectly related to the actual release of egg cells. The two cell populations involved in the production and release of release sex hormones [are] part of the follicle itself, and their release is not directly tied to ovulation. If these cells could be replaced and maintained in the ovaries, they could potentially carry on producing sex hormones and maintain the normal system of feedback between the ovaries, those hormones, and the regulatory centers in the brain, even with no egg cell replacement.

Women Age as Whole People

But of course, a woman is more than a womb, and her aging is more than the aging of her reproductive system. Aging affects every organ, every tissue, every cell. And while specific diseases and disorders arise most recognizably when the burden of cellular and molecular damage to some particular tissue crosses a "threshold of pathology," no organ ages in isolation. We age as whole people, with stiffening arteries damaging our kidneys and brains, failing eyesight impairing our intellectual work, and a rising burden of tissue damage across the entire body forcing all of our cells operate in a haze of oxidative stress and inflammation. In the end, women will be truly free of menopause when and only when we are all free of the entire degenerative aging process: when a comprehensive panel of rejuvenation biotechnologies is developed to remove, repair, replace, or render harmless the full range of the damage of aging, and all of our tissues are made new.