A Potential Way to Target Ras in Cancers

The future of effective cancer treatment will involve finding ways to selectively target and sabotage common mechanisms used by sizable fractions of the many different forms of cancer. The goal is to produce treatments that work well with few side effects, and can be applied to many cancers, so that the next generation of the commercial cancer therapy industry can be established on the back of, say, a dozen different broadly applicable therapies rather than hundreds of different treatments each specific to a subtype of cancer. Here is an example of incremental progress towards one such potential treatment:

[Researchers have] uncovered a new strategy and new potential drug to target an important signalling protein in cells called Ras, which is faulty in a third of cancers. When the Ras protein travels from the centre of a cell to the cell membrane, it becomes 'switched on' and sends signals which tell cells to grow and divide. Faulty versions of this protein cause too many of these signals to be produced - leading to cancer. Scientists have been attempting for decades to target Ras, but with little success. The reason the protein is so difficult to target is because it lacks an obvious spot on its surface that potential drug molecules can fit into in order to switch it off, like a key closing a lock.

But now the researchers have shown that instead of directly targeting the faulty protein itself they can stop it moving to the surface of the cell by blocking another protein which transports Ras - preventing it from triggering cancer in the first place. By targeting a link in the chain reaction that switches on the Ras protein, the scientists have opened opportunities to develop new treatments in the future. "We've been scratching our heads for decades to find a solution to one of the oldest conundrums in cancer research. And we're excited to discover that it's actually possible to completely bypass this cancer-causing protein rather than attack it directly. We're making new improvements on compounds for potential drugs, although the challenge still lies in developing a treatment that exploits this discovery without ruining the workings of healthy cells."

Link: http://www.alphagalileo.org/ViewItem.aspx?ItemId=146882&CultureCode=en

Comments

Post a comment; thoughtful, considered opinions are valued. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.