The Progression of Leukemia: Most Old People Have Some of the Necessary Mutations in Blood Cells

Here is an interesting look at the progression and prevalence of DNA damage leading to leukemia, cancers of bone marrow and white blood cells. Cancer is an age-related disease because its proximate cause is DNA damage and we accumulate ever more of this damage as time goes on. DNA repair systems in our cells and destruction of precancerous cells by the immune system are highly efficient but not perfect, and falter with age due to other forms of accumulating damage. The development of a robust suite of effective cancer treatments is an essential part of progress towards effective treatments for degenerative aging, and perhaps so is a means of DNA repair as well:

It is almost inevitable that we will develop genetic mutations associated with leukaemia as we age. Based on a study of 4,219 people without any evidence of blood cancer, scientists estimate that up to 20 per cent of people aged 50-60 and more than 70 per cent of people over 90 have blood cells with the same gene changes as found in leukaemia. Scientists investigating the earliest stages of cancer development used an exquisitely sensitive sequencing method capable of detecting DNA mutations present in as few as 1.6 per cent of blood cells, to analyse 15 locations in the genome, which are known to be altered in leukaemia. By comparing their findings with other research conducted with a lower degree of sensitivity over whole exomes, the scientists were able to conclude that the incidence of pre-leukaemic cells in the general population is much higher than previously thought and increases dramatically with age.

The pre-leukaemic mutations studied appear to give a growth advantage to the cells carrying them and this starts a process in which cells with these mutations dominate blood making. As they increase in number, the likelihood that one or more of them will acquire more mutations becomes greater, something that could eventually lead to leukaemia and leukaemia-like disorders. Interestingly, the study found that mutations affecting two particular genes, SF3B1 and SRSF2, appeared exclusively in people aged 70, suggesting that these mutations only give a growth benefit later in life, when there is less competition. This finding explains why myelodysplastic syndromes, a group of leukaemia-like conditions associated with these genes, appear almost exclusively in the elderly.

None of the 4219 people studied were found to have a mutation in NPM1, the most common acute leukaemia gene mutated in up to 40 per cent of cases. This unexpected result suggests that mutations in NPM1 behave as gatekeepers for this cancer; once a mutation in this gene occurs in a cell with particular previously accumulated pre-leukaemic mutations, the disease progresses rapidly to become leukaemia. "The significance of mutations in this gene is astonishingly clear from these results: it simply doesn't exist where there is no leukaemia. When it is mutated in the appropriate cell, the floodgates open and leukemia is then very likely to develop. This fits with studies we've conducted in the past in which we found that the gene primes blood stem cells for leukaemic transformation."

Link: http://www.eurekalert.org/pub_releases/2015-02/wtsi-lma022415.php