More Signs that Calico Will Fund Broad Mainstream Drug Discovery and Genetic Research
Google is pouring a large amount of money into aging research via the Calico Labs initiative. Their declared aim is to produce treatments that impact the whole of age-related degeneration, and their open support of that goal is certainly going to make it easier for other initiatives to raise funding in the future - it adds that much more legitimacy to the space in the eyes of investors and philanthropists who have so far stayed away. That is the good part. However it has become increasingly clear that the Calico Labs approach, telegraphed pretty early on, is to broadly fund the central mainstream of research and development relating to aging, which at this time is the standard process of drug discovery and investigations of the genetics of longevity. In this they might be considered a second iteration of the Ellison Medical Foundation, a funding addendum to the present efforts of the NIA and pharmaceutical companies, but really introducing no fundamentally new and better strategy. So expect past performance to predict the next decade or so here.
The Ellison Medical Foundation achieved essentially nothing of great note over the course of its existence, a period when the same could be said of most NIA projects, because the mainstream approach to aging does not consist of strategies likely to produce any significant gains in healthy human life span. I've talked about why this is the case at length over the years, but in essence it boils down to the same reasons as to why I support the SENS programs for rejuvenation biotechnology development. The preponderance of evidence strongly suggests that aging is caused by an accumulation of damage to cells and tissues. The best approach, which is the SENS approach, is to repair that damage periodically but otherwise not tinker with the operation of our metabolism: it is complicated and we understand very little of it in comparison to our understanding of the damage that is linked to aging. This is not the mainstream approach, however. In the mainstream of aging research, where researchers are interested in treating aging at all that is, the focus is on finding ways to alter the operation of our metabolism so as to slow down damage accumulation.
It doesn't require a vast and detailed understanding of biology to grasp that slowing damage is a worse strategy than repairing damage in any system, complex or not. It cannot restore youthful function and is of limited utility to old people. Further, safely altering metabolism to achieve specific goals is much harder than repairing known and clearly demarcated forms of cellular damage. This is illustrated by the fact that a clear set of plans for damage repair exist with many different options for implementation, but at this time - and after decades of work and billions of dollars invested - researchers still don't have a clear understanding of how calorie restriction works or can be reproduced, and that is the simplest and most reliable altered state of metabolism known to extend life and improve health. Even if the calorie restriction response could be recreated with a drug, the outcome would be far less health and life gained than for even a partial implementation of repair treatments.
Here are some recent news reports on the Calico initiative that reinforce the point on the broad fundamental research strategy they are choosing to take, acting in essence as a supplemental fund for existing programs and approaches to drug development, with a heavy emphasis on genetics:
The Broad Institute of MIT and Harvard has entered into a partnership with Calico around the biology and genetics of aging and early-stage drug discovery. The partnership will support several efforts at the Broad to advance the understanding of age-related diseases and to propel the translation of these findings into new therapeutics. "This alliance is a key part of Calico's strategy to bring the best cutting-edge science to bear on problems of aging. The Broad Institute is one of the nation's preeminent research organizations whose outstanding research has repeatedly revealed fundamental mechanisms of the biology and genetics of disease," said Art Levinson, Chief Executive Officer of Calico.
Calico, QB3 Launch Longevity R&D Partnership
Google-back Calico said Tuesday it will partner with the University of California institute QB3 to study longevity and age-related diseases, as well as create and foster an interdisciplinary community of scientists in those fields. The four-year partnership is designed to generate discoveries that will translate into greater understanding of the biology of aging and potential therapies for age-related diseases. The partnership plans to identify, fund and support QB3 research projects focused on aging, using committed funding from Calico - which focuses on aging research and therapeutics. "We are all aging, and we will all benefit from the discoveries made in this program and the therapies that will result," QB3 director Regis Kelly said in a statement. "We are grateful to Calico for recognizing the deep expertise at the University of California that attracts so many scientists of exceptional ability."
For those of us who do support the SENS repair approach, the lesson to take home and remember is that we will see mainstream funding of SENS-related research and development when that work becomes mainstream. Not before. It is already the case for cancer and stem cell science, where there are strands of SENS-like work taking place in many laboratories, but for the other forms of tissue repair there must be demonstrations of effectiveness. We can learn from the growing interest in senescent cell clearance: that only emerged in earnest after the 2011 demonstration of improved health in accelerated aging mice. This year we are seeing the fruits of that interest in the form of new demonstrations of effectiveness in normal mice and the first company founded to commercialize an approach to clear senescent cells. More researchers, more results, more programs underway.
However frustrating it might be, funding follows success. This is why it is so important that we continue to raise funds for early stage SENS research in order to create the technology demonstrations that can pull in that attention and funding. We are, after all, winning at this game step by step. Five years ago senescent cell clearance was something that no research groups looked at in earnest, and now we have mice that are healthier as a result of treatments that remove senescent cells. Ten years from now there will be clinical trials underway in humans. Meanwhile there are four or five other important forms of damage repair that must make the same leap, and that is only going to happen with the support of you, I, and other philanthropists.