Vinculin in Heart Aging and Longevity

Researchers have found a single gene intervention that improves heart function and extends life significantly, at least in flies. While looking at the results here, it is worth bearing in mind that a large extension of life in short-lived species via methods used to date, altering the operation of metabolism, does not seems to translate to a large extension of life in long-lived species. This is the case even when the actual mechanism is the same, works well, and seems to produce similar benefits in short term measures of health. Consider calorie restriction, for example. We certainly don't live 40% longer via that method, but mice do.

"More than 80 percent of protein groups found in flies, including vinculin network proteins, are similar to those found in rats and monkeys. We chose to focus on the proteins that naturally increase in expression in the aging hearts of flies, rats and monkeys. Since deletion or mutation of these proteins can lead to cardiomyopathy in patients, we wondered if their age-related upregulation was beneficial to the heart. Moreover, would overexpressing them improve heart function?"

Researchers found that the contractile function of the hearts of fruit flies is greatly improved in flies that overexpress the protein vinculin, which also accumulates at higher levels in the hearts of aging rats, monkeys and humans. In addition, flies genetically programmed to express elevated levels of vinculin lived significantly longer than normal fruit flies. The new study attributes the longer life of the flies to the improved contractile function of the heart due to the presence of more vinculin, which helps with the structure of the heart and connects heart muscle cells. In the study, 50 percent of vinculin-overexpressing flies lived past 11 weeks, to a maximum of 13 weeks. In contrast, 50 percent of control flies only made it to 4 weeks old and none lived past 8 weeks.

"With the average age being projected to increase dramatically in the coming decades, it is more important than ever that we understand and develop therapies for age-related heart failure. The results of this study implicate vinculin as a future candidate for therapy for people at risk of age-related heart failure." For example, if additional research supports these new findings, targeted gene or drug therapies related to vinculin and its network of proteins could be developed to strengthen the hearts of patients suffering from age-related heart failure.

Link: http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1765

Comments

Post a comment; thoughtful, considered opinions are valued. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.