An Argument for More Focus on the Oldest Old in Research

Here an argument is made for more research into aging and its potential treatment to focus on the oldest segments of the population rather than the younger old. From the perspective of SENS and damage repair to achieve rejuvenation, I'm not sure this matters all that much: what needs to be done to treat aging under that model is well categorized and understood. The challenge is finding the funding and the will for implementation, not further delving into the unknown. From the perspective of investigating and deeply understanding the complex processes of aging, mapping the intricate chains of cause and consequence from initial damage to cells and tissues all the way through to end-stage disease, the concerns are probably more valid:

"Old people" are still being clumped together as one group, with an arbitrary cutoff of age 65. This causes several problems, for example the diseases of young elderly, less than 75-years-old, are often lifestyle-related. Diseases of young-old are primarily cancers, atherosclerotic heart diseases and diabetes. While it is laudable to spend resources ameliorating these conditions, we must face up to facts about aging research. Researching and treating diseases in the young-old constitutes a low-hanging fruit for medicine and pharmaceutical companies. This is in stark contrast to the complicated web of damages accumulated systemically, perpetuating the declining health of people aged over 80. The 85+ group have been historically ignored due to lack of research on aging itself. I refer to "aging itself" to mean the metabolic waste accumulation ultimately causing the systemic frailty syndrome seen in the old old.

A major problem is that aging has not historically been defined as a disease, warranting detailed scrutiny in order to constitute a target for medicine. The world is paying the price for it. It is still not known exactly what diversifies people aged 100+ on a molecular and cellular level, versus people dying of age-related diseases in their 80s. This is due to a significant lack of autopsies, quantifying the aging damage of the centenarians. Therefore it is not understood exactly how this age category succeed in avoiding lethal pathology for so long, and how their accumulated pathology might differ.

This is ultimately the only way forward to successfully get aging under control and truly change the late 80s mortality peak and prolong maximum human lifespan beyond 100. Currently the most common age of death in Sweden is 86 for men and 88 for women, for comparison the life expectancy is 80 and 83.5. From what we can deduce, risk avoidance, as well as avoidance of well known health issues like smoking and obesity, won't give much. These modifiable factors will only shift the life expectancy towards the most common age of death. The geriatric costs are staggering, we cannot afford more short-term thinking chasing low hanging fruits labelled diseases in the young-old. Quantifying the precise systemic tissue damages in the very old is paramount for developing concrete medical targets, targets composing the panel of upcoming therapies bringing aging under medical control.

Link: http://www.longevityreporter.org/blog/2015/9/8/anti-aging-old