Investigating the Decline of Nrf2 in Aging

Nrf2 regulates a range of proteins associated with cellular repair and stress resistance, and is considered a longevity-assurance gene. There is more of it and its activities in some long-lived species, and also as a result of some of the interventions known to modestly slow aging in laboratory species. Levels of Nrf2 decline significantly with aging, however, and the balance of evidence suggests that we'd be modestly better off if that didn't happen. Researchers are slowly tracing back down the chain of cause and consequence to better understand the proximate causes of this loss:

Nrf2 is both a monitor and a messenger. It's constantly on the lookout for problems with cells that may be caused by the many metabolic insults of life - oxidative stress, toxins, pollutants, and other metabolic dysfunction. When it finds a problem, Nrf2 essentially goes back to the cellular nucleus and rings the alarm bell, where it can "turn on" up to 200 genes that are responsible for cell repair, detoxification of carcinogens, protein and lipid metabolism, antioxidant protection and other actions. "At least one important part of what we call aging appears to be a breakdown in genetic communication, in which a regulator of stress resistance declines with age. As people age and their metabolic problems increase, the levels of this regulator, Nrf2, should be increasing, but in fact they are declining."

Nrf2 is so important that it's found in many life forms, not just humans, and it's constantly manufactured by cells throughout the body. About half of it is used up every 20 minutes as it performs its life-protective functions. Metabolic insults routinely increase with age, and if things were working properly, the amount of Nrf2 that goes back into the nucleus should also increase to help deal with those insults. Instead, the level of nuclear Nrf2 declines. "The levels of Nrf2, and the functions associated with it, are routinely about 30-40 percent lower in older laboratory animals. We've been able to show for the first time what we believe is the cause."

The reason for this decline is increasing levels of a microRNA called miRNA-146a. MicroRNAs were once thought to be "junk DNA" because researchers could see them but they had no apparent biological role. They are now understood to be anything but junk - they help play a major role in genetic signaling, controlling what genes are expressed, or turned on and off to perform their function. In humans, miRNA-146a can turn on the inflammation processes that, in something like a wound, help prevent infection and begin the healing process. But with aging, this study now shows that miRNA-146a expression doesn't shut down properly, and it can significantly reduce the levels of Nrf2. This can cause part of the chronic, low-grade inflammation that is associated with the degenerative diseases that now kill most people in the developed world, including heart disease, cancer, diabetes and neurological disease. "The action of miRNA-146a in older people appears to turn from a good to a bad influence. It may be causing our detoxification processes to decline just when we need them the most."



Hi all !

Ironically, Nrf2 stands for *Nuclear* Respiratory Factor 2, yet other studies say Nuclear DNA damage has little relevancy to intrinsic aging. This study here shows they are so full of it and wrong, Nuclear respiratory factor 2 is Translocated to the Nucleus in response to oxidative stress to activate ARE/EpRE (Antioxidant Response Element/Electrophile Response Element) and Phase II detoxification enzymes as a hormetic oxidative stress resistance compensatory mechanism; Nuclear DNA genetic command activation, by Nrf2 and DAF-16 translocation in it, activate detoxification enzyme like SOD-3 (mitochondrial manganese super oxide dismutase 3) and other ones altering Redox antioxidant enzymes. All of this Because of the Nucleus.
And here they testify Nrf2 becomes unactivated with age, plus Nrf2 activaty level correlates With Maximum lifespan in mammals. Nucleus, and its chromosome Nuclear DNA, is crucial behind this orchestration, and the most crucial player in this orchestra; the conductor - the Maestro.

Posted by: CANanonymity at December 24th, 2015 10:32 AM

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.