On Rejuvenation of Muscle Stem Cell Function

This review looks at a range of investigations into the effects of aging on stem cell populations supporting muscle tissue, and various attempts to restore those populations to active duty. Stem cell populations decline with age, becoming less active and more damaged. In recent years, researchers have demonstrated that a variety of approaches can be used to instruct dormant stem cells to be more active: stem cell transplants, altered GDF11 signaling, and so forth.

Elderly humans gradually lose strength and the capacity to repair skeletal muscle. Skeletal muscle repair requires functional skeletal muscle stem (satellite) and progenitor cells (SMSCs). Diminished stem cell numbers and increased dysfunction correlate with the observed gradual loss of strength during aging. Recent reports attribute the loss of stem cell numbers and function to either increased entry into a pre-senescent state or the loss of self-renewal capacity due to an inability to maintain quiescence resulting in stem cell exhaustion.

Earlier work has shown that exposure to factors from blood of young animals and other treatments could restore SMSC function. However, cells in the pre-senescent state are refractory to the beneficial effects of being transplanted into a young environment. Entry into the pre-senescent state results from loss of autophagy, leading to increased reactive oxygen species (ROS) and epigenetic modification at the CDKN2A locus due to decreased H2Aub, up-regulating cell senescence biomarker p16ink4a. However, the pre-senescent SMSCs can be rejuvenated by agents that stimulate autophagy, such as the mTOR inhibitor rapamycin. Autophagy plays a critical role in SMSC homeostasis. These results have implications for the development of senolytic therapies that attempt to destroy p16ink4a expressing cells, since such therapies would also destroy a reservoir of potentially rescuable regenerative stem cells.

Other work suggests that in humans loss of SMSC self-renewal capacity is primarily due to decreased expression of sprouty1. DNA hypomethylation at the SPRY1 gene locus down regulates sprouty1, causing inability to maintain quiescence and eventual exhaustion of the stem cell population. A unifying hypothesis posits that in aging humans, first loss of quiescence occurs, depleting the stem cell population, but that remaining SMSCs are increasingly subject to pre-senescence in the very old.

Link: http://dx.doi.org/10.1089/rej.2016.1829