Aging of Human Egg Cells Associated with Falling Oxygen Levels

Researchers here identify a possible proximate mechanism associated with the age-related decline of human fertility. It is a little early in the research process to say what might be made of this, or how it connects to the underlying causes of degenerative aging, however.

Researchers have examined the sharp decline in egg quality in women 40 and older and found that egg damage is linked to oxygen-deprived cells. "More women are postponing childbearing, but with age, the cumulus cells that surround and nurture the eggs begin dying; we've found that this is caused by lack of oxygen. This follicular hypoxia triggers a cascade of biochemical changes in the cumulus cells. This may ultimately affect chromosomal abnormalities seen in eggs of older patients."

The researchers studied samples from 20 cumulus cells in 15 patients younger than age 35 and in those age 40 and older. The team looked for differences in RNA expression in both sets of patients. They found significant differences in RNA molecules in the cumulus cells of older patients when compared to RNA expressed in cells of patients younger than 35. Changes in the ovarian microenvironment, such as reduced oxygen supply to the growing follicles are likely causes of ovarian aging. "Our data show that cumulus cells from older women are affected by a chronic exposure to suboptimal oxygen levels, as indicated by an increased expression of hypoxia-induced genes when compared to the same cells collected in younger patients. Our findings shed light on the mechanisms responsible for human egg aging. We have always been intrigued by the questions, 'Who is the time keeper of egg aging?' and 'How are the eggs informed of the biological clock?' Now we know that changes in RNA of the cumulus cells triggered by aging-induced hypoxia, are the key messengers. The ability to screen cumulus cells for oxygen deprivation may help us identify healthier eggs, modify ovarian stimulation protocols, and ultimately lead to more successful in vitro fertilization treatments."

Link: http://news.yale.edu/2016/06/06/biological-clock-gets-time-stamp

Comments

Post a comment; thoughtful, considered opinions are valued. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.