A Method to Partially Compensate for Failing Wound Healing in Skin

The healing of wounds in skin falters with age and in conditions such as diabetes for a variety of reasons, some better understood than others. The cells responsible for building the replacement skin lose their coordination and in the worst cases this can lead to wounds that do not heal at all. The research noted here doesn't address the underlying reasons for this failure of healing, the molecular damage of aging, but attempts to work around the problem by providing some of the structure and functions that the cells are failing to achieve on their own, and by delivering signals that are known to generally increase cell performance in growth and regeneration.

A team of researchers has demonstrated for the first time that their peptide-hydrogel biomaterial prompts skin cells to "crawl" toward one another, closing chronic, non-healing wounds often associated with diabetes, such as bed sores and foot ulcers. The team tested their biomaterial on healthy cells from the surface of human skin, called keratinocytes, as well as on keratinocytes derived from elderly diabetic patients. They saw non-healing wounds close 200 per cent faster than with no treatment, and 60 per cent faster than treatment with a leading commercially used collagen-based product.

Until now, most treatments for chronic wounds involved applying topical ointments that promote the growth of blood vessels to the area. But in diabetic patients, blood vessel growth is inhibited, making those treatments ineffective. Researchers have been working with their special peptide - called QHREDGS, or Q-peptide for short - for almost 10 years. They knew it promoted survival of many different cell types, including stem cells, heart cells and fibroblasts (the cells that make connective tissues), but had never applied it to wound healing. "We thought that if we were able to use our peptide to both promote survival and give these skin cells a substrate so they could crawl together, they would be able to close the wound more quickly. That was the underlying hypothesis."

The researchers compared the Q-peptide-hydrogel mix to the commercially available collagen dressing, to hydrogels without the peptide, and to no treatment. They found that a single dose of their peptide-hydrogel biomaterial closed the wounds in less than two weeks. "Currently, there are therapies for diabetic foot ulcers, but they can be improved. Diabetic wound healing is a complicated condition, because many aspects of the normal wound healing process are disrupted." This finding could have big implications for many types of wound treatments, from recovery after a heart attack to healing post-surgery. Accelerated healing times also introduces the added benefit of reducing the opportunity for infection.

Link: https://www.eurekalert.org/pub_releases/2016-12/uotf-sc121216.php

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.