Regeneration of Torn Rotator Cuffs

Scientists here report on progress in developing a regenerative therapy for a rotator cuff injuries, a fairly common and troubling problem that is prone to reoccur even following successful surgical treatment. The approach taken is cell therapy combined with a nanoscale scaffold to guide and support the transplanted cells. The researchers claim an unusually robust outcome, which we can hope to be a positive sign for this portion of the field of regenerative medicine. Cell and scaffold approaches are quite varied and widespread, so improvements achieved in the treatment of one type of injury may be applicable to a range of others.

Every time you throw a ball, swing a golf club, reach for a jar on a shelf, or cradle a baby, you can thank your rotator cuff. This nest of tendons connecting your arm bone to your shoulder socket is a functional marvel, but it's also prone to tearing and difficult to surgically repair. Rotator cuff problems are common, with about 2 million people afflicted and about 300,000 rotator cuff repair surgeries every year in the U.S. Surgeons have many techniques to reconnect the tendon to the bone. The problem is that often they don't stay reconnected. In a new study, researchers using a nano-textured fabric seeded with stem cells were able to get torn rotator cuff tendons to regenerate in animals. Not only did the tendons wrapped in the fabric make a better attachment to the bone, they were stronger overall, with a cell structure that looked more like natural, undamaged tissue. Tendons repaired with a purely surgical technique healed with a more disorganized cell structure, which made the tendon itself weaker and more prone to failure.

The combination of the "nano-mesh" with stem cells seems to be critical. Surgeons will sometimes inject stem cells into rotator cuff repairs, but results from this technique are mixed. Stem cells alone don't necessarily stick around at the surgery site. Adding the mesh changes that. The mesh, made of a nanostructured polymer combining polycaprolactone and polyphosphazene provides an attractive habitat for the stem cells to hunker down. Once they settle into the rotator cuff location, the stem cells begin sending out signals directing other cells to align and grow into tendon tissue. Images taken at six and 12 weeks in animals show that torn rotator cuff tissue reorganizes under the influence of the matrix and stem cells. Once the tendon is fully regenerated, the polymer matrix can dissolve. If the combo polymer mesh plus stem cell technique proves durable in human rotator cuff tendons, the researchers won't stop there. "Being able to regenerate complex soft tissues like the rotator cuff is an important step, but we have even bigger goals."

Link: http://today.uconn.edu/2017/04/stem-cell-fabric-innovation-regrows-rotator-cuffs/

Comments

I would be interested if you begin the testing process and procedure on humans.

Posted by: Marty Fowler at April 4th, 2019 11:41 AM

I would like to know more about the procedure

Posted by: Dan Moodie at July 12th, 2020 12:23 PM

I have suffered for years with Shoulder pain. I've been told my Rotator Cuff is completely worn out. I'd love to hear if this procedure has been trialed and successful

Posted by: Janice hare at May 7th, 2021 2:03 PM
Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.