Altering Relative Macrophage Population Numbers to Enhance Nerve Regeneration
A good deal of evidence has accumulated to show that the immune cells called macrophages play important roles in regeneration. Further, there are several different classes of macrophage with quite different behaviors, and while all are essential in the bigger picture, one of them tends to hinder regeneration as a side-effect of the accomplishment of its other duties. Researchers have shown in a number of studies that adjusting the proportion of macrophages in a tissue, towards less of the hindering type, can significantly improve outcomes, and perhaps even produce regeneration that would normally not occur with any great reliability, such as regrowth of nerve tissue. This paper is a recent example of this area of research:
After nerve trauma, the standard clinical operating procedure is to oppose the two nerve ends and, when possible, suture them together. Ultimately, even with successful autografting, only 40% of patients regain useful function. Therefore, there is a clear, urgent, and unmet clinical need for an alternative approach that can match or exceed autograft performance. After peripheral nervous system (PNS) injuries, neurons respond rapidly by changing their activities and promoting a regenerative phenotype. At the distal nerve stump, Schwann cells (SCs) adopt a reparative phenotype. SCs, as well as infiltrating and resident macrophages, remove inhibitory debris, enabling new axons to sprout into the degenerated nerve. Although monocytes and their descendants (in particular, macrophages) have long been known to play an essential role in the degenerative process, only recently has their importance in positively influencing regeneration been recognized. Monocytes are abundant during nerve degeneration and regeneration and modulate the sequence of cellular events which can determine the outcome of the healing process.
After inflammatory insult, macrophages that accumulate at the site of injury appear to be derived largely from circulating monocytes. Entry of monocytes into the distal site of an injured nerve is enabled through up-regulation and release of a major monocyte chemokine, monocyte chemoattractant protein (CCL2) by SCs, which reaches its maximum 1 day after injury. Besides CCL2, the CX3CR1 ligand (fractalkine) can also recruit monocytes through the CX3CR1 receptor. In rats, two major subsets of monocytes have been identified. These two subtypes of monocytes can be recruited to injured tissues, where they can subsequently differentiate into classically activated (M1) or alternatively activated (M2) macrophages. These two phenotypes of macrophages represent a simplistic discrete depiction of a continuous spectrum between two activation states. Generally, M1 macrophages produce proinflammatory cytokines as well as high levels of oxidative metabolites, and M2 macrophages make the environment supportive for tissue repair by producing antiinflammatory cytokines that facilitate matrix remodeling and angiogenesis.
The plasticity of monocytes/macrophages makes them an attractive target for modulation in the context of nerve repair. A prior short-term study demonstrated that direct modulation of macrophages toward a prohealing phenotype, using interleukin 4 (IL-4), results in an increase in SC recruitment and axonal growth. The premise herein is that preferential recruitment of anti-inflammatory reparative monocytes to the site of injury will more effectively bias the immune microenvironment toward a prohealing response and in turn set off a regenerative biochemical cascade involving SCs and neuronal processes that leads to improved repair. Since CX3CR1 receptor is mainly expressed on antiinflammatory reparative monocytes, exogenous fractalkine, the ligand for CX3CR1, can be used to preferentially recruit these monocytes to the site of nerve injury and thus increase the subsequent ratio of prohealing to proinflammatory macrophages during the regeneration process.
Thus an immunomodulatory approach to stimulating nerve repair in a nerve-guidance scaffold was used to explore the regenerative effect of reparative monocyte recruitment. Early modulation of the immune environment at the injury site via fractalkine delivery resulted in a dramatic increase in regeneration as evident from histological and electrophysiological analyses. This study suggests that biasing the infiltrating inflammatory/immune cellular milieu after injury toward a proregenerative population creates a permissive environment for repair. This approach is a shift from the current modes of clinical and laboratory methods for nerve repair, which potentially opens an alternative paradigm to stimulate endogenous peripheral nerve repair.