An Update from the CellAge Team

The Life Extension Advocacy Foundation staff note a recent update from the CellAge team. That company was partially funded by a crowdfunding event, held at Lifespan.io, that completed in early 2017. The founders are now moving forward with their work on synthetic promoters as a way to identify senescent cells and quantify the burden of senescence in specific tissues. The senolytics development community has spent the past few years forging ahead with ways to destroy senescent cells, but improvements in the state of assays for senescence has lagged behind.

Staining a tissue sample for simple markers of senescence, such as expression of p16, is the present standard procedure. It is good enough for development, but really not acceptable for either commercial use or more sophisticated research in the years ahead. If someone wants to assess on a month to month or year to year basis just how many senescent cells are in specific tissues, a much better approach will be needed. That demand will arise rapidly enough once human data starts to arrive from trials of early senolytic therapies. The microfluidics approach to counting senescent cells by size that was published last year is a step in the right direction, and hopefully the CellAge work will in the fullness of time lead to still better options.

We have been quiet for a while so we thought it was time for a small update about the Cellage project. We are working with Circularis to screen for new senescent cell promoters using a unique technological platform never used before with human or senescent cells. A promoter is a region of DNA that initiates the expression of a particular gene. Promoters are located near the transcription start sites of genes, on the same strand and upstream on the DNA. In this case, we are searching for gene expression relating to cellular senescence and using p16 and CMV promoters as our positive controls.

If this is successful we will then move onto screening for synthetic promoters from a library of over 100,000 novel synthetic promoters. The objective being to identify suitable promoters so we can develop a highly accurate way to detect the presence of senescent cells that surpasses the current state of the art methods such as p16.

Link: https://www.leafscience.org/cellage-september-2018/