A Study Observing No Significant Relationship Between Exceptional Longevity and Cardiovascular Risk Factors

Today's open access paper illustrates one of the many issues inherent in the study of the biochemistry and genetics of exceptionally long-lived people, which is that the data from various different initiatives rarely agrees. The effects of individual or even groups of gene variants are small and hard to pin down. Past studies have suggested that exceptional longevity is correlated with a lack of cardiovascular risk factors, whether genetic or measured aspects of biochemistry such as lipid levels in blood. That seems a sensible hypothesis: cardiovascular disease removes people from the population, therefore older cohorts should exhibit fewer signs of risk for cardiovascular disease. Yet that is not the case in the work presented here: there is no good association between longevity and lesser presence of risk factors.

What this sort of distribution of results should tell us is that the biochemistry of exceptional human longevity is a poor area of study if the goal is to produce reliable therapies with large effects on human aging. Old people who survive to very late life do so largely because they are either lucky (in exposure to pathogens, in the way in which the damage of aging progressed in a stochastic manner in their case) or because they made good lifestyle choices for much of their span of years. Or both. Beneficial genetic variants and consequent differences in cellular metabolism appear to confer only very modest increases in the odds of living for a long time, and even for those people who do live longer, the impact of degenerative aging is very significant. An environment of small, unreliable effects should be skipped in favor of research strategies with larger potential gains at the end of the day.

Exceptional Longevity and Polygenic Risk for Cardiovascular Health

Exceptional longevity, defined as exceeding the average life expectancy, is multifaceted with genetic, environmental, and epigenetic factors all playing a role. Exceptionally long-lived (ELL) individuals are examples of successful ageing with a proportion demonstrating compression of morbidity. It is important to study these models of successful ageing, as these rare individuals may reveal novel longevity-associated pathways, which may ultimately translate into strategies to promote health in our ageing population.

There is evidence linking healthier cardiovascular risk profiles and lower incidence of cardiovascular disease with longevity. Analysis of lipid metabolism in longevous families identified changes in lipid concentration in the offspring of nonagenarians. Levels of apolipoproteins, important lipid transporters in the circulatory system, have been observed to decline with age. However, higher apolipoprotein levels in the exceptionally long lived have been reported, suggesting a younger apolipoprotein profile that may promote longevity.

Polygenic risk scores (PRS) for cardiovascular-related phenotypes can now be calculated due to the availability of summary data from genome-wide association studies (GWAS) examining a broad range of traits from lipids to coronary artery disease. This facilitates the evaluation of the contribution of polygenic risk for cardiovascular risk factors and disease to exceptional longevity and successful ageing. Thus, the purpose of this study was to explore the genetic profiles of ELL individuals aged (≥95 years) by assessing their polygenic risk for cardiovascular related risk and disease phenotypes relative to middle-aged controls.

This study did not confirm the hypothesis that ELL individuals have lower polygenic risk scores for cardiovascular-related phenotypes. Only the HDL cholesterol and triglyceride PRS were nominally significantly associated with ELL participants. In contrast and as expected, ELL individuals had higher polygenic risk scores for exceptional longevity (EL). In regards to the associations of the various cardiovascular PRS with EL, no findings survived correction for multiple testing. This is despite validating the utility of the lipid PRS by confirming positive associations with measured lipid levels in our sample. Interestingly, the different lipid PRS were based on GWAS that found a large number of genome-wide significant loci. ELL individuals had lower LDL and total cholesterol levels than controls in this study, but they did not differ on their respective PRS. This may suggest that environmental factors, perhaps lifestyle-related, influenced these lipid levels, which possibly promote longevity.

In contrast, the UK Biobank study observed that extreme parental longevity (defined as at least one parent who survived to the top 1% of age at death) had lower polygenic risk for several cardiovascular health measures. Namely coronary artery disease, systolic blood pressure, body mass index, high-density lipoproteins, low-density lipoproteins, and triglycerides. A similar result for HDL cholesterol and extreme parental longevity (EPL) by the UK Biobank to the current study was reported. Again, similar results were reported by the UK Biobank for LDL. However, the observed discrepancies between our analysis and the UK Biobank were most likely due to methodological differences, including the use of PRS that were based on different GWAS.

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.