Investigating the Superior DNA Defenses of Tardigrades

Tardigrades are extremely resilient to radiation induced DNA damage, and here researchers delve into some of the mechanisms involved. Mining other species for potential improvements to our own biochemistry, or the basis for therapies, is an expanding line of work in the life science community. Possible ways to improve mammalian defenses against damage to nuclear DNA are of interest for a range of reasons, not least of which is that it is the present consensus that stochastic mutation to nuclear DNA contributes to both cancer risk and aging itself, as mutations in stem cells or progenitor cells can spread throughout tissues via clonal expansion.

Tardigrades, which are also known as water bears or moss piglets, are small invertebrate animals that are found in marine, freshwater, and terrestrial habitats throughout the Earth. Terrestrial tardigrades require a thin film of water to remain active. In the absence of water, they undergo anhydrobiosis into a dormant dehydrated state from which they can be rehydrated to an active form. In the anhydrobiotic state, tardigrades are resistant to extreme conditions of heat, cold, vacuum, pressure, radiation, and chemical treatments. Remarkably, they have been found to survive exposure to the vacuum and radiation of outer space.

The tardigrade Ramazzottius varieornatus contains a unique nuclear protein termed Dsup, for damage suppressor, which can increase the resistance of human cells to DNA damage under conditions, such as ionizing radiation or hydrogen peroxide treatment, that generate hydroxyl radicals. Here we find that R. varieornatus Dsup is a nucleosome-binding protein that protects chromatin from hydroxyl radicals. Moreover, a Dsup ortholog from the tardigrade Hypsibius exemplaris similarly binds to nucleosomes and protects DNA from hydroxyl radicals.

Strikingly, a conserved region in Dsup proteins exhibits sequence similarity to the nucleosome-binding domain of vertebrate HMGN proteins and is functionally important for nucleosome binding and hydroxyl radical protection. These findings suggest that Dsup promotes the survival of tardigrades under diverse conditions by a direct mechanism that involves binding to nucleosomes and protecting chromosomal DNA from hydroxyl radicals.



Interesting, another bell and whistle to put in a stem cell

Posted by: Tom at October 11th, 2019 6:45 AM
Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.