Suggesting Gum Disease Worsens the Progression of Other Conditions via Oxidative Stress Rather than Inflammation

Periodontitis, gum disease, produces chronic inflammation that is thought to worsen the progression of conditions such as cardiovascular disease and dementia, through the size of the effect is debated. Certainly there are good reasons to believe that more chronic inflammatory signaling is worse than less chronic inflammatory signaling. Researchers here suggest that the observed relationship between periodontitis and progression of chronic kidney disease is mediated by excessive production of oxidative molecules rather than by inflammation.

Previous studies have shown a link between the severe oral inflammation caused by gum disease and chronic kidney disease (CKD) which demonstrated that those with worse inflammation of the gums have worse kidney function. Previous research also showed that patients with CKD and periodontitis experience a drop in survival rates, similar in magnitude to if they had diabetes instead of gum inflammation, suggesting that gum inflammation may casually affect kidney function.

In this latest study, over 700 patients with chronic kidney disease were examined using detailed oral and full-body examinations including blood samples. The aim was to test the hypothesis that periodontal inflammation and kidney function affect each other and to establish the underlying mechanism that may facilitate this. Results showed that just a 10% increase in gum inflammation reduces kidney function by 3%. In this group of patients, a 3% worsening in kidney function would translate to an increase in the risk of kidney failure over a 5 year period from 32%-34%. Results also showed that a 10% reduction in kidney function increases periodontal inflammation by 25%.

In contrast to current beliefs that inflammation is the link between periodontitis and other systemic diseases, researchers found that in this group of patients the effect was caused by a biological process called "oxidative stress" - or, an imbalance between reactive oxygen species and the body's antioxidant capacity which damages tissues on a cellular level.

Link: https://www.eurekalert.org/pub_releases/2021-01/uob-ded010521.php