A Profile of Repair Biotechnologies, Working to End Atherosclerosis

Repair Biotechnologies is the company I founded with Bill Cherman a few years ago, to work on interesting projects in the rejuvenation biotechnology space. Time flies when one is busy. Our primary focus these days is the development of what we call the cholesterol degrading platform (CDP), a technology that does exactly what one would expect from the name. Localized excesses of cholesterol - and particularly toxic, altered forms of cholesterol - lie at the root of numerous serious medical conditions, and contribute to a lesser degree to many more.

Of those conditions atherosclerosis is the most important, given the vast numbers of people it kills, year in and year out, and given the inability of present approaches to therapy to do more than slow down its progression. Our view of this sort of challenge in medicine is to take the direct path, treat excess cholesterol as a form of damage, and repair that damage by removing the cholesterol. In an animal model of atherosclerosis, the cholesterol degrading platform achieved a 48% reversal of arterial obstruction by plaque following a single treatment.

"All of the greatest research programs start out with one scientist poking at something that he or she finds interesting. In this case it was the question of why mammalian cells do not routinely break down cholesterol, and instead make do with an intricate, fragile set of processes for shuttling cholesterol within cells and throughout the body. The presence of localized excesses of cholesterol in blood vessel walls is a lifespan-limiting circumstance that occurs to all of us, leading to atherosclerosis, then rupture or blockage of blood vessels that causes a stroke, heart attack, and death. Why then, do none of the cells involved in blood vessel tissue and the immune response to atherosclerosis actively break down cholesterol, but rather engage a Rube Goldberg apparatus of moving cholesterol around to try to solve the problem? The reason why we have atherosclerosis in the first place is that this machinery fails the moment that the tissue environment departs from a youthful, undamaged ideal. It is not robust at all. A more direct approach is needed."

The core mechanisms of CDP came into being due to the academic curiosity of a few "visionary and talented researchers"; once a way to safely break down excess cholesterol in cells was found and optimised, the Strategies for Engineered Negligible Senescence (SENS) community, who are focused on producing effective treatments for aging and age-related disease, became aware of these mechanisms and worked on implementing CDP. "The scientists presented their data at the first Undoing Aging conference, and Aubrey de Grey of the SENS Research Foundation later made an introduction to Repair Biotechnologies. The SENS philosophy - and the Repair Biotechnologies philosophy - is to reverse age-related disease by repairing the damage that causes it. Excess cholesterol is clearly a form of damage. Removing it is a form of repair. CDP strikes at a root cause of atherosclerosis, and other conditions in which excess cholesterol drives pathology. That makes it very attractive to those of us who think of aging in terms of damage and think of rejuvenation in terms of repair."

CDP is a platform technology that seeks to solve the root cause of cholesterol build-up by degrading excess, non-essential cholesterol with an entirely new, target-specific, rate-limited pathway, which the process introduces into cells. "We introduce a de novo pathway for catabolism of excess cholesterol, breaking it down into a water-soluble catabolite that leaves cells and is removed from the body fairly rapidly. Introduced into mice, the CDP pathway is safe and well-tolerated. It does not interfere with the normal cholesterol metabolism required for cellular activities. It is a very attractive basis for therapy."

Link: https://www.longevity.technology/repair-bios-novel-platform-and-exclusive-from-ceo/