Intermittent Fasting Enhances Long Term Memory in Mice to a Greater Degree than Mild Calorie Restriction

It is always interesting to see studies that compare the outcomes of calorie restriction and intermittent fasting. In this case, researchers provide evidence to suggest that, at the same mild overall calorie reduction versus ad libitum feeding, intermittent fasting produces larger effects on memory function. If those effects are driven in large part by the biochemistry of hunger, then we might think that intermittent fasting produces more time spent hungry, and thus a larger effect size. The choice of amount of calorie reduction may well influence the outcome of any such comparison for other reasons, however.

Daily calorie restriction (CR) and intermittent fasting (IF) enhance longevity and cognition. Despite the positive effects of CR and IF in neurodegenerative and affective conditions, the specific behavioral contributions and mechanisms that differentiate both interventions remain largely unknown. Answering these questions is pivotal to adapting these regimens to human populations, given the challenges of adhering to a long-term CR regimen when compared to the improved adherence to variations of the IF paradigm.

Here, we directly compared the effects of IF to a matched 10% daily CR regimen upon learning and memory in mice. A 10% energy restriction protocol was chosen for the CR group following the observation that IF mice overall consume 10% less calories on a weekly basis. IF improved long-term retention memory to a greater extent than CR and was associated with increased adult hippocampal neurogenesis and upregulation of the longevity gene Klotho. Though klotho protein is produced primarily in the kidney, it is also highly expressed in some brain areas, including the dentate gyrus of the hippocampus and in particular by its mature neurons.

The function of klotho in the brain is still largely unknown but it has been proposed that it plays an important role in cognition because increased serum levels of klotho were associated with increased cognitive ability in humans and rodents. Here, we confirm previous evidence suggesting that Kl is an important regulator of adult hippocampal neurogenesis and propose it as a novel molecular player through which IF may enhance cognitive performance.

Link: https://doi.org/10.1038/s41380-021-01102-4

Comments

Also....

What to know about fasting, aging, the 'longevity diet' and when you should eat
https://news.usc.edu/135551/fasting-aging-dieting-and-when-you-should-eat-valter-longo/

'It turns out that it is important to stick very close to 12 hours of feeding and 12 hours of fasting. If you eat 15 hours a day or more, that starts to be associated with metabolic problems, sleep disorders, etc. ... But also, if you fast for longer than 12 or 13 hours, that starts to be associated with problems like gallstone formation, and we also know that longer fasts can lead people to skip breakfast. There are a number of studies, and we have our own data supporting this, showing that skipping breakfast is associated with increased risk for overall mortality and cardiovascular disease. So not only is it not good, it is bad for you.'

Posted by: Jones at June 1st, 2021 6:01 AM

According to the supplementary materials the intermittent fasting regimen used in the study was every other day feeding, so it was true intermittent fasting, not time restricted feeding.

Posted by: Kel at June 1st, 2021 5:46 PM
Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.