D-Glyceric Acid Supplementation Improves Mitochondrial Function and Reduces Inflammation in Old People

This open access paper reports on a small study of D-glyceric acid supplementation in older adults. A few weeks of supplementation produced modest gains in mitochondrial function and reductions in measures of inflammation. As is usually the case, it is worth comparing this with the effects of regular exercise, which remains somewhat better at improving mitochondrial function and reducing inflammation in comparison to most of the other available approaches to manipulation of mitochondrial metabolism.

D-glyceric acid (DGA) is a natural organic acid present in very small amounts in vertebrates and plants. Nevertheless, there are only a few scientific studies on this small metabolite. Due to its small size and low, varying, concentrations even the measurement of exact DGA concentration from fluids, and tissues at physiological levels is somewhat challenging. The aim of the present study was to find out direct and indirect indications of the activation of mitochondrial metabolism by the use of DGA.

The main target in the present study with 27 healthy 50-60-year-old human volunteers was to find out whether an "acute" 4-days and a longer 21-days exogenous DGA regimen caused moderate activation of the mitochondrial energy metabolism. The results revealed the following statistically significant findings: 1) plasma concentrations of metabolites related to aerobic energy production, especially lactate, were strongly reduced, 2) systemic inflammation was lowered both in 4- and 21-days, 3) mitochondria-related mRNA expressions in circulating immune cells were noticeably modulated at Day 4, 4) cellular membrane integrity seemed to be sharply enhanced, and 5) cellular NADH/NAD+ ratio was upregulated.

Mitochondrial metabolism was clearly upregulated at the whole-body level in both 4 and 21 days. At the same time, the effect of DGA was very well tolerated. Based on received solid results, the DGA regimen may alleviate acute and chronic energy metabolic challenges in main organs like the liver, central nervous system, and skeletal muscles. Enhanced membrane integrity combined with lower systemic inflammation and activated metabolic flows by the DGA regimen may be beneficial especially for the aging population.

Link: https://doi.org/10.3389/fragi.2021.752636