More On Depletion of Soluble Amyloid-β in Alzheimer's Disease

If slow amyloid-β aggregation over years is the cause of Alzheimer's disease, then how to explain the older individuals who have high levels of amyloid-β in the brain, but do not suffer from Alzheimer's disease? Further, how to explain the failure of amyloid-β clearance via immunotherapy in clinical trials? Amyloid-β is successfully cleared from the brain, but patient outcomes do not improve meaningfully. This line of thinking led to the hypothesis, with supporting evidence, that amyloid-β aggregation is pathological only because it depletes levels of soluble amyloid-β. It doesn't cause that issue to the same degree in every older individual, however, and individuals who manage to maintain high levels of soluble amyloid-β avoid Alzheimer's disease even when they have a large burden of amyloid-β aggregates.

Key support for the toxic amyloid hypothesis comes from the observation that mutations in any of three genes (APP, PSEN1, and PSEN2) lead to Alzheimer's disease (AD). The genetic evidence causally implicates the fibrillogenic 42-amino acid amyloid-β peptide (Aβ42). However, the disease pathogenesis may arise from either of two ends of the protein aggregation process: the increase in insoluble amyloid plaques or the depletion of the soluble Aβ42 peptide, which has important functions. While insoluble amyloid plaques can be present in normal individuals, low soluble levels of Aβ42 are an invariable feature of AD.

The hypothesis of Aβ toxicity has traditionally been supported by the notion that AD-causing mutation carriers must have high levels of soluble Aβ42 relative to non-mutation populations. In fact, mutation carriers have lower Aβ42 levels compared to non-mutation populations. The reduction in soluble Aβ42 levels among mutation carriers begins as many as 25 years before the onset of cognitive symptoms. Therefore, the toxicity in the process of accelerated protein aggregation among mutation carriers may conceivably be due to the depletion in soluble Aβ42 to a greater extent than the corresponding increase in amyloid. This alternative hypothesis offers an explanation for the failures in translating amyloid reduction into cognitive improvement, even among mutation carriers, and for the paradoxes posed by the large proportion of amyloid-positive individuals without dementia and even of centenarians without history of cognitive abnormalities, half of whom have autopsy-confirmed AD pathology.

We recently observed that among amyloid positron emission tomography (PET)-positive individuals, higher levels of soluble Aβ42 were associated with normal cognition and brain volumes in all tertiles of brain amyloidosis, with an effect size greater than that of increases in brain amyloid burden.

Link: https://doi.org/10.3233/JAD-220808

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.