Reprogramming as an Approach to Reduce T Cell Exhaustion

T cell exhaustion occurs following repeated stimulation, such as when faced with a growing cancer or persistent viral infection. It manifests as a progressive loss of function, the T cells no longer attacking pathogens or errant cells. Finding a way to minimize this phenomenon would assist in a range of conditions, such as by improving the outcome of T cell immunotherapies targeting cancer, and might help improve the aged immune system, in which T cell exhaustion is also observed. Here, the use of partial reprogramming is suggested as an approach to achieve this goal. In partial reprogramming, cells are exposed to the factors that can change somatic cells into pluripotent stem cells, but only for a limited time. This exposure does not change cell type, but resets the epigenetic landscape - and thus cell behavior - to a more youthful, functional state.

Turn Biotechnologies, a cell rejuvenation company developing novel mRNA medicines to cure untreatable, age-related conditions, today presents interim pre-clinical data that demonstrates treating T cells with its proprietary technologies can significantly increase their ability to kill cancer. The data show that using Turn Bio's Epigenetic Reprogramming of Aging (ERA) technology in the manufacture of T cells can produce and deliver more effective therapies more efficiently. The findings promise to help reduce the cost of T-cell therapies and make them more accessible to cancer patients.

Turn Bio's technologies were applied concurrently with the CAR T-cell manufacturing process, which demonstrates that T-cell immunotherapy products can be enhanced without additional time or facilities beyond those already needed for manufacturing. The company's process can transfect immune cells with rates as high as industry-standard electroporation, but with no cytotoxicity while precisely controlling timing, duration and activation of the ERA factor cocktail while preserving cellular identity.



While modifying the t-cell is it possible to use cas-9 to shut off or leave out a receptor the virus uses to gain entry into the T-cell?

Posted by: Eli Waygood at September 11th, 2023 1:00 PM
Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.