George Church on Reprogramming as a Treatment for Aging

In a recent interview, George Church offers opinions on partial reprogramming as an approach to rejuvenation. In the last few years this has moved from popular topic to becoming a sizable fraction of the longevity industry, given the large-scale funding that is now devoted to partial reprogramming groups. Short-term exposure to the Yamanaka factors can be used to reset the epigenetic patterns of a cell in old tissue to be more like those of a cell in young tissue, with corresponding gains in function. There are potentially serious issues to be worked out, such as how to eliminate the possibility of cancer due to the few cells that might fully reprogram into pluripotency in a short time, but this is nonetheless an exciting area of medical science that is now heavily funded. We should expect to see significant progress in the years ahead.

Do we understand how cellular reprogramming improves health and longevity?

There have been two major camps in aging since long ago. One says that aging happens due to damage, to proteins, lipids, RNA, and DNA, and that you have to go in there with your repair kit and fix it as a therapist. The other camp says that it's all epigenetic, and that if you convince the cell that it's young, it will get its own toolkit out and start repairing as much as it can. Some things are beyond repair. If you delete all copies of a tumor suppressor, that's not something a young cell can repair. But most things are fixable with epigenetics - at least, that's how the second hypothesis goes.

I believe in a hybrid model. I think most of the work can be done epigenetically. A surprising amount of it can be done via the bloodstream, but probably not all of it. Then, there's a residual amount that you can fix with the Yamanaka factors and another residual amount that you can fix by restoring genes. Since we do the epigenetic reprogramming by adding in genes, it's not that fundamental a difference between adding in genes that will go into the blood, adding genes that will reprogram the nucleus, and adding genes that are missing, like tumor suppressors. In a certain sense, they are all addressable by multiplex gene therapy. That's why being able to either use multiple rounds of dosing or to have bigger vectors will become increasingly important.

Given the rising popularity of partial reprogramming, what is its overall place in the longevity landscape?

I think there are subtle but important differences between anti-aging drugs and drugs that improve biomarkers in the way that statins improve cholesterol. That doesn't mean such drugs increase longevity, just that they improve this one biochemical. It could actually hurt you; for instance, it could improve cardiovascular chances for some subset of the population, but for another subset, it could hasten muscle pain. So, affecting biomarkers is one thing. Reversing diseases of aging is different. You could do it just by addressing that particular disease, or you could do it more broadly, affecting multiple diseases. You might get FDA approval for one of them, but it's actually affecting multiple ones, and maybe acting preventatively. Say, there might be a cure for muscle wasting that helps prevent a variety of diseases. Finally, you're really at the core of aging when you reprogram shared elements - with good feedback systems that already exist in the body or with feedback systems that you introduce as part of the therapy.

Are you bullish about longevity biotech?

I think the whole field is very healthy economically and scientifically. We have passed through multiple "valleys of death". We're now in the solid science phase, and this field is going to be very impactful, maybe more impactful than any other pharmaceuticals in history, including even antibiotics, because our very ability to fight off diseases is age-related. Almost every single form of human morbidity and mortality has an age-related component to it. If you want to have a pleiotropic effect on many different diseases, this is the way to go.

Link: https://www.lifespan.io/news/prof-george-church-on-cellular-reprogramming-and-longevity/