Deriving a Metabolic Profile Associated with Mortality

Researchers here illustrate the point that one can produce mortality-associated profiles from just about any sufficiently complex set of medical data. The focus here is on metabolites measured in a blood sample. Given the many thousands of different small molecules found in the bloodstream, this is far from the only group to have produced profiles and clocks from the metabolome. The body changes in characteristic ways with age and disease, and those who are worse off, laboring under a greater burden of damage and dysfunction, will see that status reflected at every level of measurement.

Experimental studies reported biochemical actions underpinning aging processes and mortality, but the relevant metabolic alterations in humans are not well understood. Here we examine the associations of 243 plasma metabolites with mortality and longevity (attaining age 85 years) in 11,634 US (median follow-up of 22.6 years, with 4288 deaths) and 1,878 Spanish participants (median follow-up of 14.5 years, with 525 deaths).

We find that, higher levels of N2,N2-dimethylguanosine, pseudouridine, N4-acetylcytidine, 4-acetamidobutanoic acid, N1-acetylspermidine, and lipids with fewer double bonds are associated with increased risk of all-cause mortality and reduced odds of longevity; whereas L-serine and lipids with more double bonds are associated with lower mortality risk and a higher likelihood of longevity. We further develop a multi-metabolite profile score that is associated with higher mortality risk. Our findings suggest that differences in levels of nucleosides, amino acids, and several lipid subclasses can predict mortality. The underlying mechanisms remain to be determined.