Microglia Become Progressively More Dysfunctional with Age

Microglia are innate immune cells resident in the brain, analogous to macrophages elsewhere in the body, but with the addition of a portfolio of duties relating to the maintenance of neural function. With age ever more microglia become overly inflammatory, contributing to disruptive, unresolved inflammatory signaling, and abandoning their tissue maintenance tasks. This is thought to be an important contribution to neurodegenerative conditions and loss of cognitive function more generally. Researchers here report that the adoption of an inflammatory state is a progressive dysfunction for individual microglia, not just a matter of how many microglia have switched over to undertake inflammatory behavior.

Numerous studies have indicated that aged microglia are inflamed, have reduced phagocytic capacity, and have decreased motility. Microglia exhibit several hallmarks of aging that potentially contribute to their age-related dysfunction, such as shortened telomeres, altered intercellular communication, molecular alterations, and a loss of proteostasis. Furthermore, many recent studies have started to reveal the molecular changes that define microglial aging. Single cell RNA-Seq (scRNA-Seq) analyses indicate that microglia isolated from the entire brain lose homeostasis and activate inflammatory transcriptional profiles with age. Data rich studies have also revealed partial overlaps between aging microglia and those from disease models, including Alzheimer's disease.

Studies using aged plasma administration and heterochronic blood exchange demonstrate that microglia aging is in part driven by the aged systemic environment. However, the genesis of age-related dystrophic microglial phenotypes has not been extensively investigated. So, we set out to characterize the progression of age-related hippocampal microglial dysfunction, aiming to uncover intermediate states that could be intrinsic to the aging process. To do so, we undertook complementary cellular and molecular analyses of microglia across the adult lifespan and in heterochronic parabiosis - an experimental model of aging in which the circulatory systems of young adult and aged animals are joined.

In this study, we report that microglia in the adult mouse hippocampus, a brain region responsible for learning and memory and susceptible to age-related cognitive decline, advance through intermediate states that drive inflammatory activation during aging. We utilize scRNA-Seq across the adult lifespan to identify intermediate transcriptional states of microglial aging that emerge following exposure to an aged systemic environment. Functionally, we tested the role of these intermediate states using in vitro microglia approaches and an in vivo temporally controlled adult microglia-specific Tgfb1 conditional genetic knockout mouse model to demonstrate that intermediates represent checkpoints in the progression of microglia from homeostasis to inflammatory activation, with functional implications for hippocampal-dependent cognitive decline.

Link: https://doi.org/10.1101/2024.04.09.588665

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.