HDAC11 Deficiency Slows Muscle Aging

Researchers have found that genetic engineering to reduce expression of HDAC11 favorably changes the metabolism of muscle tissue in mice regardless of age. In older mice this alteration slows the well known loss of muscle mass and strength and improves muscle regeneration. Interestingly, HDAC11 inhibitor small molecules have been identified by the cancer research community, so the next step is to assess the ability of these drugs to improve muscle function in old mice.

Sarcopenia, defined as the progressive loss of skeletal muscle mass and function associated with ageing, has devastating effects in terms of reducing the quality of life of older people. Muscle ageing is characterised by muscle atrophy and decreased capacity for muscle repair, including a reduction in the muscle stem cell pool that impedes recovery after injury. Histone deacetylase 11 (HDAC11) is the newest member of the HDAC family and it is highly expressed in skeletal muscle. Our group recently showed that genetic deficiency in HDAC11 increases skeletal muscle regeneration, mitochondrial function, and globally improves muscle performance in young mice.

Here, we explore for the first time the functional consequences of HDAC11 deficiency in old mice, in homeostasis and during muscle regeneration. Aged mice lacking HDAC11 show attenuated muscle atrophy and postsynaptic fragmentation of the neuromuscular junction, but no significant differences in the number or diameter of myelinated axons of peripheral nerves. Maintenance of the muscle stem cell reservoir and advanced skeletal muscle regeneration after injury are also observed.

HDAC11 depletion enhances mitochondrial fatty acid oxidation and attenuates age-associated alterations in skeletal muscle fatty acid composition, reducing drastically the omega-6/omega-3 fatty acid ratio and improving significantly the omega-3 index, providing an explanation for improved muscle strength and fatigue resistance and decreased mortality. Taken together, our results point to HDAC11 as a new target for the treatment of sarcopenia. Importantly, selective HDAC11 inhibitors have recently been developed that could offer a new therapeutic approach to slow the ageing process.

Link: https://doi.org/10.1007/s11357-025-01611-y

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.