Deep Knowledge Ventures to Support BioViva's Human Gene Therapy Development

Fortes fortuna iuvat, as they say. I'm pleased to see that the BioViva principals have attracted the support of Deep Knowledge Life Sciences as they continue to bootstrap their very intentionally disruptive gene therapy startup:

Deep Knowledge Life Sciences and BioViva announce partnership

"BioViva aims to make gene therapy affordable to everyone. Dmitry Kaminskiy, the founding partner of Deep Knowledge Life Sciences, is enthusiastically funding gene therapy, and is himself an early adopter." said BioViva CEO Elizabeth Parrish, adding "We both want to see a world where investors actually live their legacy instead of just leaving it", alluding to a possible future trend. Parrish made headlines in 2015 when she travelled to an undisclosed location outside the US and personally underwent two of her own company's experimental gene therapies: one to protect against loss of muscle mass with age, another to battle stem cell depletion. It was a gesture intended to prove the safety of the therapies and clear the road ahead for human trials in the US. Months later, BioViva are tracking her results and she has reported no negative side-effects. "I believed the biotech industry had become over-regulated and that the prevailing model was unlikely to bring new therapies to market in our lifetime. What we needed was a company that would treat diseased patients with no other options and then develop these treatments into preventative medicines. And thus was born BioViva in 2015."

For Dmitry Kaminskiy it's not all about the portfolio. He wants to shift the entire industry up a gear, and put an end to the lack of vision he believes has mired biotechnology for decades: "Millions of human lives are affected by diseases with a genetic component. The sooner we can bring affordable gene therapies and other cell therapies to market, the more needless deaths can be avoided."

I regard the shared vision of bypassing excessive regulation in medical development to be somewhat more important than the exact nature of the therapies under development today. Rapid, effective passage to the clinic will be the legacy here, the opening of a door that will see an increasing number of developers in every important field of medicine adopting a fast path to medical tourism and clinical availability outside the US and Europe, transparency of ongoing results, and a sensible degree of safely data. The stem cell field and countless patients benefited greatly from this sort of approach over the past fifteen years, and it really should be the standard, not the exception.

What constitutes a sensible degree of safety data? That should up to companies and patients to decide upon for themselves, but it is certainly far, far less than the FDA presently insists upon. The FDA leadership are not primarily concerned with safety at all, but rather the potential political fallout that might result from approving any any therapy, ever. There is no such thing as a safe medical treatment, but the media can pounce at random on any death, and the defense put up in advance by FDA career bureaucrats is to demand as much expense and data as possible from applicants. Few people seem to care about the potential therapies that never make it through the process, or are never submitted because there is no possible profit - those losses are invisible, but they are measured in lives, not money. These perverse incentives, rife in every government agency, is why the cost of developing drugs is huge, why the process is lengthy and drawn out beyond all common sense, and why the cost has doubled in the past decade. These imposes costs are pointless and unnecessary, and a huge burden on progress. It is long past time to evade the FDA and take the road of medical tourism, transparency from companies, educated customers, and sane levels of testing and development cost.

BioViva has demonstrated prototype follistatin and telomerase gene therapies in the first human volunteer. If successful, and with a enough uptake in cells, the former should provide increased muscle mass and thus compensate partially for the sarcopenia that accompanies aging, while the latter may globally increase stem cell activity, offsetting to some limited degree the decline that occurs with age. To my eyes follistatin and similar myostatin gene therapies are about as low risk as any genetic edit can be before it has been used by thousands of people. Myostatin blockers of various sorts have been trialed in humans with positive results, and scores of animal studies for follistatin and myostatin gene therapies have taken place since the turn of the century. There are natural human and animal myostatin loss of function mutants to study as well, and most seem to do pretty well with their extra muscle tissue. Telomerase gene therapy on the other hand strikes me as being more risky. It clearly extends life and improves health in mice, but mice have very different telomere and telomerase dynamics when compared to humans. There is the strong possibility that telomerase therapies will boost cancer incidence in humans, even though they don't do that in mice. At some point it has to be tried based on the intriguing animal study results, but I wouldn't want to be first in line.

There is no reason for gene therapies to be expensive once they are out of their initial phase of development and early adoption. This is the age of CRISPR, an basis for gene therapy that makes genetic editing so cheap and easy that near every life science laboratory can now undertake this research. A gene therapy treatment to enhance capabilities or compensate somewhat for one or more of the losses of aging, such as myostatin knockout or follistatin overexpression, will trend towards becoming a mass produced infusion, the same for everyone, administered by a bored clinician, and with limited need for followup attention from a physician. All of the complexity is baked into the manufacturing process, and the cost will scale down as the production runs grow large. Unlike drugs for medical conditions, the target market here is every adult human being: the economies of scale and competition will be more like like those for present day childhood vaccinations than other types of medication, and the price will accordingly fall to the same low level.

So, I hope to see BioViva prosper in their effort to shake up clinical translation, and demonstrate that no-one really needs the FDA in order to responsibly place the next generation of therapies in the hands of patients. They have picked a set of treatments likely to attract a lot of interested parties to the clinics that will provide them, and the advent of CRISPR-based gene therapies will make expansion to other very interesting therapies quite plausible. Things should become interesting in the years ahead, I believe.