The Advanced Regenerative Manufacturing Institute Works Towards the Mass Production of Organs

It seems that more members of the high profile entrepreneur segment are starting to consider mass manufacture of tissue engineered organs as an area to put time and effort into. The publicity article here offers one example. While the research community has yet to produce a robust means of creating the microvasculature needed to sustain larger tissue sections, that absence is really the only serious roadblock standing between the state of the science today and a manufactured, patient-matched kidney or liver a few years from now. It is high time to consider moving the technology from laboratory to manufactory.

Even lacking the ability to lace tissue with tiny blood vessels, researchers can still create small organoids that exhibit the correct structure and function of their tissue type. In large numbers, organoids could be used instead of a full organ transplant, the aim being to patch a damaged organ with scores of tiny organoids that will integrate with the tissue and augment its failing function. That is a practical vision, just as soon as the ability to mass-manufacture organoids comes to pass. Creating the proof of concept in the laboratory is one thing; creating ten thousand of them to order, and within tight quality constraints, is quite another. A company that succeeds in that goal over the next decade or so will be ready to start on full-sized organs when the blood vessel problem is finally solved.

Basic researchers have produced skin, veins, trachea and urethras -the relatively easy structural tissues and organs those in the field call "sheets and tubes" - but the processes are painstaking and expensive. A decade ago researchers pioneered the development of 3D printers capable of printing customized organ scaffolds made of keratin, collagen, or biodegradable polymers, then ones that could print skin cells directly onto a patient; and then ones that could print cells and the vessel passages that keep them alive directly onto scaffolds that could then be implanted in the body. Growing these tissues or organs can take anywhere from days to weeks depending on their size and complexity.

But getting these groundbreaking innovations off the lab bench and into commercial production has proved a daunting task. The engineering challenges are enormous, and most basic scientists have no experience in creating mass assembly systems, much less ones whose production can earn Food and Drug Administration approval for use in living people. Dozens of private companies have been at work trying to develop products for clinical use, but progress has been painfully slow. "We were making an esophagus, but the manufacturing processes were really the views of a scientist thinking about how manufacturing should be done. The industry is still basically making things largely by hand, one by one, with people handling the equipment that feeds the tissue making decisions in real time... There's very little process control."

Dean Kamen likens the problem to that of a grandmother who can make the world's greatest chicken soup. "OK, Grandma. How are you going to run a canning operation?" he asks. "She wants to go to scale, what does she do? She hires 10,000 other grandmas! They have a bigger kitchen They all stir by hand in bowls. And then the FDA comes in there and says 'How do you know your production is consistent?'!" If she were making soup, Grandma could outsource production to Campbell's Soup, but tissue engineering researchers can't. "They could win the Nobel prize for figuring out how to grow more cool stuff in a petri dish than anyone I know, but they're not going to figure out how to make 400,000 of the things. But interestingly, he can't go to Campbell's because there is no Campbell's!"

A chance meeting with another famous entrepreneur, Martine Rothblatt, set Kamen on a path that would lead him to try to create, from scratch, the manufacturing equipment, procedures and the know-how to move regenerative medicine from a science experiment to mass production. Then, out of the blue, one of Kamen's colleagues saw a request for proposal from the Department of Defense to establish a state-of-the-art institute tasked with creating an advanced innovation ecosystem for the manufacture of human tissues and organs to help wounded soldiers and civilian patients alike. "We looked at this and we saw that the equipment they were going to need to help soldiers were pretty much the same things we would need to build for Martine. So we figured, let's scale this thing up and build all the tools and processes for all the tissues and organs."

One year later, a three-story, 65,000-foot former mill building next to Kamen's headquarters houses the Advanced Regenerative Manufacturing Institute, where over 100 engineers, researchers and programmers are already at work building machines and devices and testing the processes that will allow its dozens of member firms to perfect and mass produce their respective products, from skin to, one day, hearts. Kamen has persuaded venture capital firms to help fund the startups that have joined the coalition and recruited a veteran FDA official to consult with the agency on regulatory approval. "I think in the next five years we are going to have some awesome results and some nice functional tissues to really start helping people on a bigger scale."



Good news to read when the site of Solving Organ Shortage (SOS) have been down for weeks, when they should host the heart conference.

Posted by: Norse at December 20th, 2017 10:29 AM
Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.