Resveratrol is Not an Effective Calorie Restriction Mimetic
Resveratrol and derived molecules were for a time excessively hyped as a means to trigger some of the beneficial metabolic response produced by calorie restriction, by acting on sirtuins, and thus have a positive impact on aging. The company Sirtris was founded to develop this area of research into a therapeutic, its backers did a great deal to promote the aforementioned excessive hype, the company sold to Big Pharma for a sizable sum, and then the program was later dropped because the effect sizes were small and unreliable. The years following this sort of hype cycle tend to see a great deal of independent investigation of mechanisms, just in case there is gold in those hills. That is followed by review papers such as the one noted here, when it turns out in the end that there wasn't much of practical application to be found in this line of research.
Caloric restriction (CR) has been shown repeatedly to prolong the lifespan in laboratory animals, with its benefits dependent on molecular targets forming part of the nutrient signaling network, including the NAD-dependent deacetylase silent mating type information regulation 2 homologue 1 (SIRT1). It has been hypothesized that the stilbene resveratrol (RSV) may counteract age- and obesity-related diseases similarly to CR. In yeast and worms, RSV-promoted longevity also depended on SIRT1.
While it remains unclear whether RSV can prolong lifespans in mammals, some studies in rodents supplemented with RSV have reported lowered body weight (BW) and fat mass, improved insulin sensitivity, lowered cholesterol levels, increased fitness, and mitochondrial biogenesis. Molecular mechanisms possibly leading to such changes include altered gene transcription and activation of SIRT1, AMP-activated kinase (AMPK), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A). However, some mouse models did not benefit from RSV treatment to the same extent as others.
We conducted a literature search for trials directly comparing RSV application to CR feeding in mice. In most studies retrieved by this systematic search, mice supplemented with RSV did not show significant reductions of BW, glucose, or insulin. Moreover, in some of these studies, RSV and CR treatments affected molecular targets differently and/or findings on RSV and CR impacts varied between trials. Although there may be a moderate effect of RSV supplementation on parameters such as insulin sensitivity toward a more CR-like profile in mice, data are inconsistent. Likewise, RSV supplementation trials in humans report controversial findings. While we consider that RSV may, under certain circumstances, moderately mimic some aspects of CR, current evidence does not fully support its use to prevent or treat age- or obesity-related diseases.